scholarly journals Comprehension of Postmetallization Annealed MOCVD-TiO2on(NH4)2STreated III-V Semiconductors

2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Ming-Kwei Lee ◽  
Chih-Feng Yen

The electrical characteristics of TiO2films grown on III-V semiconductors (e.g., p-type InP and GaAs) by metal-organic chemical vapor deposition were studied. With (NH4)2S treatment, the electrical characteristics of MOS capacitors are improved due to the reduction of native oxides. The electrical characteristics can be further improved by the postmetallization annealing, which causes hydrogen atomic ion to passivate defects and the grain boundary of polycrystalline TiO2films. For postmetallization annealed TiO2on (NH4)2S treated InP MOS, the leakage current densities can reach2.7×10−7and2.3×10−7 A/cm2at±1 MV/cm, respectively. The dielectric constant and effective oxide charges are 46 and1.96×1012 C/cm2, respectively. The interface state density is7.13×1011 cm−2eV−1at the energy of 0.67 eV from the edge of valence band. For postmetallization annealed TiO2on (NH4)2S treated GaAs MOS, The leakage current densities can reach9.7×10−8and1.4×10−7at±1 MV/cm, respectively. The dielectric constant and effective oxide charges are 66 and1.86×1012 C/cm2, respectively. The interface state density is5.96×1011 cm−2eV−1at the energy of 0.7 eV from the edge of valence band.

1998 ◽  
Author(s):  
Tomasz Brozek ◽  
James Heddleson

Abstract Use of non-contact test techniques to characterize degradation of the Si-SiO2 system on the wafer surface exposed to a plasma environment have proven themselves to be sensitive and useful in investigation of plasma charging level and uniformity. The current paper describes application of the surface charge analyzer and surface photo-voltage tool to explore process-induced charging occurring during plasma enhanced chemical vapor deposition (PECVD) of TEOS oxide. The oxide charge, the interface state density, and dopant deactivation are studied on blanket oxidized wafers with respect to the effect of oxide deposition, power lift step, and subsequent annealing.


2004 ◽  
Vol 830 ◽  
Author(s):  
Osamu Matsuura ◽  
Hideki Yamawaki ◽  
Masaki Nakabayashi ◽  
Yoshimasa Horii ◽  
Yoshihiro Sugiyama

ABSTRACTWe studied the Nb doping effect on the electrical characteristics of MOCVD-PZT capacitors using uniformly Nb-doped Pb(Zr, Ti)O3 (UND-PZT) and δ-Nb-doped PZT (DND-PZT) prepared by MOCVD. The 2Pr for UND-PZT was small and the UND-PZT hysteresis shifted in a positive direction. However, the 2Pr for DND-PZT decreased by only 5.5% and the hysteresis of DND-PZT didn't shift. In addition, the leakage current of DND-PZT decreased by one order at low bias compared to non-doped PZT, because the δ-Nb-doping layer maintains the barrier height, higher than that of none-doped PZT due to defect compensation. As a result, Nb1% DND-PZT was well suited to use Nb doping which decreases leakage current at low voltage and maintains 2Pr.


2007 ◽  
Vol 556-557 ◽  
pp. 787-790 ◽  
Author(s):  
Shiro Hino ◽  
Tomohiro Hatayama ◽  
Naruhisa Miura ◽  
Tatsuo Oomori ◽  
Eisuke Tokumitsu

We have fabricated and characterized MOS capacitors and lateral MOSFETs using Al2O3 as a gate insulator. Al2O3 films were deposited by metal-organic chemical vapor deposition (MOCVD) at temperatures as low as 190 oC using tri-ethyl-aluminum and H2O as precursors. We first demonstrate from the capacitance – voltage (C-V) measurements that the Al2O3/SiC interface has lower interface state density than the thermally-grown SiO2/SiC interface. No significant difference was observed between X-ray photoelectron spectroscopy (XPS) Si 2p spectrum from the Al2O3/SiC interface and that from the SiC substrate, which means the SiC substrate was not oxidized during the Al2O3 deposition. Next, we show that the fabricated lateral SiC-MOSFETs with Al2O3 gate insulator have good drain current – drain voltage (ID-VD) and drain current – gate voltage (ID-VG) characteristics with normally-off behavior. The obtained peak values of field-effect mobility (μFE) are between 68 and 88 cm2/Vs.


2000 ◽  
Vol 640 ◽  
Author(s):  
Hiroyuki Matsunami ◽  
Tsunenobu Kimoto ◽  
Hiroshi Yano

ABSTRACTHigh-quality 4H-SiC has been epitaxially grown on (1120) substrates by chemical vapor deposition. The physical properties of epilayers and MOS interfaces on both (1120) and off-axis (0001) substrates are elucidated. An unintentionally doped 4H-SiC epilayer on (1120) shows a donor concentration of 1×1014 cm−3 with a total trap concentration as low as 3.8×1012 cm−3. Inversion-type planar MOSFETs fabricated on 4H-SiC (1120) exhibit a high channel mobility of 96 cm2/Vs. The channel mobility decreases according to the T−2.2 dependence above 200K, indicating reduced Coulomb scattering and/or electron trapping. The superior MOS interface on (1120) originates from the much lower interface state density near the conduction band edge.


2002 ◽  
Vol 745 ◽  
Author(s):  
Spyridon Skordas ◽  
Filippos Papadatos ◽  
Steven Consiglio ◽  
Eric Eisenbraun ◽  
Alain Kaloyeros

ABSTRACTIn this work, the electrical performance and interfacial characteristics of MOCVD-grown Al2O3 films are evaluated. Electrical characteristics (dielectric constant, leakage current) of as-deposited and annealed capacitor metal-oxide-semiconductor (MOS) stacks were determined using capacitance-voltage (C-V) and current-voltage (I-V) measurements. It was observed that the electrical properties were dependent upon specific annealing conditions, with an anneal in O2 followed by forming gas being superior with respect to leakage current, resulting in leakage characteristics superior to those of SiO2. All annealing conditions evaluated led to an increase in dielectric constant from 6.5 to 9.0–9.8. Also, Al2O3 growth and interfacial oxide growth characteristics on oxynitride/Si and Si substrates were evaluated and compared using spectroscopic ellipsometry. A parasitic oxide layer was observed to form on silicon during the initial stages of MOCVD Al2O3 growth, while a thin oxynitride layer deposited on Si prevented the growth of interfacial oxide.


1998 ◽  
Vol 555 ◽  
Author(s):  
A. Izumi ◽  
H. Matsumura

AbstractWe propose a novel preparation of high quality silicon nitride (SiNx) films by catalytic chemical vapor deposition (Cat-CVD) method for the application of antireflection coatings. It is found that the refractive index (n) of the Cat-CVD SiNx films are controlled from 2.0 to 2.5 by varying the flow ratio of SiH4 and NH3. The properties of the SiNx (n = 2.0) are investigated, and it is found that, 1) the 16-BHF etching rate of the Cat-CVD SiNx film is only 23 A/min, and the film shows excellent moisture resistance, 2) the Cat-CVD SiNx film shows good insulating properties, and the breakdown electric field is higher than 9 MV/cm and the interface state density is 5.6x 1011 cm2eV-1, 3) the step coverage of the film is very conformal.


Sign in / Sign up

Export Citation Format

Share Document