Circuit Tracing on Integrated Circuit Using FIB Passive Voltage Contrast Effect

Author(s):  
Alexander Sorkin ◽  
Chris Pawlowicz ◽  
Alex Krechmer ◽  
Michael W. Phaneuf

Abstract Competitive circuit analysis of Integrated Circuits (ICs) is one of the most challenging types of analysis. It involves multiple complex IC die de-processing/de-layering steps while keeping precise planarity from metal layer to metal layer. Each step is followed by Scanning Electron Microscope (SEM) imaging together with mosaicking that subsequently passes through an image recognition and Graphic Database System (GDS) conversion process. This conventional procedure is quite time and resource consuming. The current paper discusses and demonstrates a new inventive methodology of circuit tracing on an IC using known FIB Passive Voltage Contrast (PVC) effects [1]. This technique provides significant savings in time and resources.

Author(s):  
James Vickers ◽  
Seema Somani ◽  
Blake Freeman ◽  
Pete Carleson ◽  
Lubomír Tùma ◽  
...  

Abstract We report on using the voltage-contrast mechanism of a scanning electron microscope to probe electrical waveforms on FinFET transistors that are located within active integrated circuits. The FinFET devices are accessed from the backside of the integrated circuit, enabling electrical activity on any transistor within a working device to be probed. We demonstrate gigahertz-bandwidth probing at 10-nm resolution using a stroboscopic pulsed electron source.


Author(s):  
Alexander Sorkin ◽  
Chris Pawlowicz ◽  
Alex Krechmer

Abstract Competitive circuit analysis of an Integrated Circuit (IC) is one of the most challenging types of analysis. It involves various high technology steps of IC die de-processing/de-layering; keeping precise planarity from metal layer to metal layer, Scanning Electron Microscope (SEM) imaging and images mosaicking, image recognition and Graphic Database System (GDS) segmentation processes and finally logic and architecture level analysis. One of the most complicated analysis is Power Management and Power Distribution [2] on the entire IC die when no datasheet or other IC’s information is available. Power Distribution analysis requires the highest level of architecture analysis, not feasible by conventional Reverse Engineering (RE) methods or extremely costly. The current paper discusses and demonstrates a new inventive methodology of Power Distribution analysis using known FIB Passive Voltage Contrast (PVC) effects [1]. This patented technique provides significant time and resources saving.


Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
M.G. Rosenfield

Minimum feature sizes in experimental integrated circuits are approaching 0.5 μm and below. During the fabrication process it is usually necessary to be able to non-destructively measure the critical dimensions in resist and after the various process steps. This can be accomplished using the low voltage SEM. Submicron linewidth measurement is typically done by manually measuring the SEM micrographs. Since it is desirable to make as many measurements as possible in the shortest period of time, it is important that this technique be automated.Linewidth measurement using the scanning electron microscope is not well understood. The basic intent is to measure the size of a structure from the secondary electron signal generated by that structure. Thus, it is important to understand how the actual dimension of the line being measured relates to the secondary electron signal. Since different features generate different signals, the same method of relating linewidth to signal cannot be used. For example, the peak to peak method may be used to accurately measure the linewidth of an isolated resist line; but, a threshold technique may be required for an isolated space in resist.


Author(s):  
T.C. Sheu ◽  
S. Myhajlenko ◽  
D. Davito ◽  
J.L. Edwards ◽  
R. Roedel ◽  
...  

Liquid encapsulated Czochralski (LEC) semi-insulating (SI) GaAs has applications in integrated optics and integrated circuits. Yield and device performance is dependent on the homogeniety of the wafers. Therefore, it is important to characterise the uniformity of the GaAs substrates. In this respect, cathodoluminescence (CL) has been used to detect the presence of crystal defects and growth striations. However, when SI GaAs is examined in a scanning electron microscope (SEM), there will be a tendency for the surface to charge up. The surface charging affects the backscattered and secondary electron (SE) yield. Local variations in the surface charge will give rise to contrast (effectively voltage contrast) in the SE image. This may be associated with non-uniformities in the spatial distribution of resistivity. Wakefield et al have made use of “charging microscopy” to reveal resistivity variations across a SI GaAs wafer. In this work we report on CL imaging, the conditions used to obtain “charged” SE images and some aspects of the contrast behaviour.


Author(s):  
Edward Coyne

Abstract This paper describes the problems encountered and solutions found to the practical objective of developing an imaging technique that would produce a more detailed analysis of IC material structures then a scanning electron microscope. To find a solution to this objective the theoretical idea of converting a standard SEM to produce a STEM image was developed. This solution would enable high magnification, material contrasting, detailed cross sectional analysis of integrated circuits with an ordinary SEM. This would provide a practical and cost effective alternative to Transmission Electron Microscopy (TEM), where the higher TEM accelerating voltages would ultimately yield a more detailed cross sectional image. An additional advantage, developed subsequent to STEM imaging was the use of EDX analysis to perform high-resolution element identification of IC cross sections. High-resolution element identification when used in conjunction with high-resolution STEM images provides an analysis technique that exceeds the capabilities of conventional SEM imaging.


Author(s):  
David M. Shuttleworth ◽  
Mary Drummond Roby

Abstract Interaction of inline SEM inspections with tungsten window-1 integrity were investigated. Multiple SEMs were utilized and various points in the processing were inspected. It was found that in certain circumstances inline SEM inspection induced increased window-1 contact resistance in both source/drain and gate contacts, up to and including electrical opens for the source/drain contacts.


Author(s):  
Julien Goxe ◽  
Béatrice Vanhuffel ◽  
Marie Castignolles ◽  
Thomas Zirilli

Abstract Passive Voltage Contrast (PVC) in a Scanning Electron Microscope (SEM) or a Focused Ion Beam (FIB) is a key Failure Analysis (FA) technique to highlight a leaky gate. The introduction of Silicon On Insulator (SOI) substrate in our recent automotive analog mixed-signal technology highlighted a new challenge: the Bottom Oxide (BOX) layer, by isolating the Silicon Active Area from the bulk made PVC technique less effective in finding leaky MOSFET gates. A solution involving sample preparation performed with standard FA toolset is proposed to enhance PVC on SOI substrate.


Sign in / Sign up

Export Citation Format

Share Document