Electron Beam Induced Resistance Change for Device Characterization and Defect Localization

Author(s):  
Gregory M. Johnson ◽  
Christopher D’Aleo ◽  
Ziyan Xu ◽  
Unoh Kwon ◽  
Harvey Berman ◽  
...  

Abstract Semiconductor Test Site structures were analyzed using an EBIRCH (Electron Beam Induced Resistance CHange) system. Localization of a RX (active area) to PC (gate) short was achieved with resolution that surpassed that of OBIRCH (Optical Beam Induced Resistance CHange). A voltage breakdown test structure at Metal 1 was stressed in the system, giving isolation to the specific contact. A five-fin diode macro was examined, and it is believed that the electrically active diffusions were imaged as individual fins from Metal 1. A series of ring oscillator devices were examined in steady state condition, and careful consideration of the image supports a hypothesis that Seebeck effect, from heating material interfaces in an EBIRCH system, is the reason for the “dipoles” reported in earlier literature.

Author(s):  
Brett A. Buchea ◽  
Christopher S. Butler ◽  
H.J. Ryu ◽  
Wen-hsien Chuang ◽  
Martin von Haartman ◽  
...  

Abstract A novel fault isolation technique, electron beam induced resistance change (EBIRCh), allows for the direct stimulation and localization of eBeam current sensitive defects with resolution of approximately 100nm square, continuing a history of beam based failure isolation methods. EBIRCh has been shown to work over a range of defects, significantly decreasing the time required for isolation of shorts through straightforward high resolution imagery, allowing for explicit visual defect isolation with a linear resolution of approximately 10nm. This paper discusses the operational setups for the source and amplifier while performing an EBIRCh scan, describes the processes involved in the Intel test vehicle that was used to test EBIRCh, and provides information on two independent functional theories for EBIRCh that operate in conjunction to a greater or lesser extent depending on the defect type. EBIRCh is expected to improve through-put and resolution on various defect types compared to conventional fault isolation techniques.


Author(s):  
Felix Rolf ◽  
Christian Hollerith ◽  
Christian Feuerbaum

Abstract With decreasing transistor sizes accurate failure localization becomes more and more important in order to find the root cause of failures with high efficiency. Field returns are a special challenge, since there is usually only one sample for preparation. Hence, reliable high resolution localization is mandatory for a successful preparation. Optical beam induced resistance change (OBIRCH) is a powerful tool for localization but has resolution limitations due to the diameter of the optical beam. The tool can be further improved by the lock-in technique. In this paper we demonstrate that the lock-in technique can also be applied for electron beam localization methods like electron beam induced current (EBIC) / electron beam absorbed current (EBAC) and resistance change imaging (RCI) / electron beam induced resistance change (EBIRCH).


2018 ◽  
Author(s):  
Gregory M. Johnson ◽  
Zaheer Khan ◽  
Christopher D’Aleo ◽  
Brian Yates ◽  
Michael Iwatake ◽  
...  

Abstract Electron-Beam Induced Resistance CHange (EBIRCH) is a technique that makes use of the electron beam of a scanning electron microscope for defect localization. The beam has an effect on the sample, and the resistance changes resulting from that effect are mapped in the system. This paper explores the beam-based nature of the technique and uses understanding from another beam-based technique, Optical Beam Induced Resistance CHange (OBIRCH), to propose a dominant mechanism. This mechanism may explain the widely different success rates between different types of samples observed after six month’s use of the technique for isolations on large health of line structures in a failure analysis lab.


2021 ◽  
Author(s):  
Yunfei Wang ◽  
Hyuk Ju Ryu ◽  
Tom Tong

Abstract In this paper, we present case studies of localizing resistive open defects using various FA techniques, including two-terminal IV, two-terminal Electron-Beam Absorbed Current (EBAC), Electron Beam Induced Resistance Change (EBIRCh), Pulsed IV, Capacitance-Voltage (CV) and Scanning Capacitance Microscopy (SCM). The advantage and limitation of each technique will also be discussed.


Author(s):  
Frank S. Arnold

Abstract To be better prepared to use laser based failure isolation techniques on field failures of complex integrated circuits, simple test structures without any failures can be used to study Optical Beam Induced Resistance Change (OBIRCH) results. In this article, four case studies are presented on the following test structures: metal strap, contact string, VIA string, and comb test structure. Several experiments were done to investigate why an OBIRCH image was seen in certain areas of a VIA string and not in others. One experiment showed the OBRICH variation was not related to the cooling and heating effects of the topology, or laser beam focusing. A 4 point probe resistance measurement and cross-sectional views correlated with the OBIRCH results and proved OBIRCH was able to detect a variation in VIA fabrication.


2018 ◽  
Author(s):  
Satish Kodali ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chong Khiam Oh

Abstract Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.


2011 ◽  
Vol 12 (10) ◽  
pp. 1632-1637 ◽  
Author(s):  
Heng-Tien Lin ◽  
Chang-Yu Lin ◽  
Zingway Pei ◽  
Jun-Rong Chen ◽  
Yi-Jen Chan ◽  
...  

2007 ◽  
Vol 56 (3) ◽  
pp. 1637
Author(s):  
Li Qian ◽  
Wang Zhi-Guo ◽  
Liu Su ◽  
Xing Zhong-Wen ◽  
Liu Mei

Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 539 ◽  
Author(s):  
Tomoya Koshi ◽  
Ken-ichi Nomura ◽  
Manabu Yoshida

Directly printing conductive ink on textiles is simple and compatible with the conventional electronics manufacturing process. However, the conductive patterns thus formed often show high initial resistance and significant resistance increase due to tensile deformation. Achieving conductive patterns with low initial resistance and reduced deformation-induced resistance increase is a significant challenge in the field of electronic textiles (e-textiles). In this study, the passivation layers printed on conductive patterns, which are necessary for practical use, were examined as a possible solution. Specifically, the reduction of the initial resistance and deformation-induced resistance increase, caused by the curing shrinkage of passivation layers, were theoretically and experimentally investigated. In the theoretical analysis, to clarify the mechanism of the reduction of deformation-induced resistance increase, crack propagation in conductive patterns was analyzed. In the experiments, conductive patterns with and without shrinking passivation layers (polydimethylsiloxane) cured at temperatures of 20–120 °C were prepared, and the initial resistances and resistance increases due to cyclic tensile and washing in each case were compared. As a result, the initial resistance was reduced further by the formation of shrinking passivation layers cured at higher temperatures, and reduced to 0.45 times when the curing temperature was 120 °C. The cyclic tensile and washing tests confirmed a 0.48 and a 0.011 times reduction of resistance change rate after the 100th elongation cycle (10% in elongation rate) and the 10th washing cycle, respectively, by comparing the samples with and without shrinking passivation layers cured at 120 °C.


2019 ◽  
Vol 125 (11) ◽  
pp. 115102 ◽  
Author(s):  
Joe Sakai ◽  
Maxime Bavencoffe ◽  
Beatrice Negulescu ◽  
Patrice Limelette ◽  
Jérôme Wolfman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document