scholarly journals Photon Emission Microscopy of HfO2 ReRAM Cells

Author(s):  
Franco Stellari ◽  
Ernest Y. Wu ◽  
Takashi Ando ◽  
Martin M. Frank ◽  
Peilin Song

Abstract In this paper, we discuss the use of spontaneous Photon Emission Microscopy (PEM) for observing filaments formed in HfO2 Resistive Random Access Memory (ReRAM) cells. A CCD and an InGaAs camera can be used to quickly observe photon emission in both reverse (reset) and forward (set) bias conditions. An electric field model and a uniform Poisson spatial distribution model are used to explain the intensity and location of the experimental data. Single filament fluctuations and multiple filaments are also observed for the first time.

2021 ◽  
pp. 1-1
Author(s):  
Franco Stellari ◽  
Ernest Y. Wu ◽  
Takashi Ando ◽  
Eduard Cartier ◽  
Martin M. Frank ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meng-Cheng Yen ◽  
Chia-Jung Lee ◽  
Kang-Hsiang Liu ◽  
Yi Peng ◽  
Junfu Leng ◽  
...  

AbstractField-induced ionic motions in all-inorganic CsPbBr3 perovskite quantum dots (QDs) strongly dictate not only their electro-optical characteristics but also the ultimate optoelectronic device performance. Here, we show that the functionality of a single Ag/CsPbBr3/ITO device can be actively switched on a sub-millisecond scale from a resistive random-access memory (RRAM) to a light-emitting electrochemical cell (LEC), or vice versa, by simply modulating its bias polarity. We then realize for the first time a fast, all-perovskite light-emitting memory (LEM) operating at 5 kHz by pairing such two identical devices in series, in which one functions as an RRAM to electrically read the encoded data while the other simultaneously as an LEC for a parallel, non-contact optical reading. We further show that the digital status of the LEM can be perceived in real time from its emission color. Our work opens up a completely new horizon for more advanced all-inorganic perovskite optoelectronic technologies.


2020 ◽  
Vol 12 (2) ◽  
pp. 02008-1-02008-4
Author(s):  
Pramod J. Patil ◽  
◽  
Namita A. Ahir ◽  
Suhas Yadav ◽  
Chetan C. Revadekar ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1401
Author(s):  
Te Jui Yen ◽  
Albert Chin ◽  
Vladimir Gritsenko

Large device variation is a fundamental challenge for resistive random access memory (RRAM) array circuit. Improved device-to-device distributions of set and reset voltages in a SiNx RRAM device is realized via arsenic ion (As+) implantation. Besides, the As+-implanted SiNx RRAM device exhibits much tighter cycle-to-cycle distribution than the nonimplanted device. The As+-implanted SiNx device further exhibits excellent performance, which shows high stability and a large 1.73 × 103 resistance window at 85 °C retention for 104 s, and a large 103 resistance window after 105 cycles of the pulsed endurance test. The current–voltage characteristics of high- and low-resistance states were both analyzed as space-charge-limited conduction mechanism. From the simulated defect distribution in the SiNx layer, a microscopic model was established, and the formation and rupture of defect-conductive paths were proposed for the resistance switching behavior. Therefore, the reason for such high device performance can be attributed to the sufficient defects created by As+ implantation that leads to low forming and operation power.


2021 ◽  
Vol 23 (10) ◽  
pp. 5975-5983
Author(s):  
Jie Hou ◽  
Rui Guo ◽  
Jie Su ◽  
Yawei Du ◽  
Zhenhua Lin ◽  
...  

In this study, at least three kinds of VOs and conductive filaments with low resistance states and forming and set voltages are found for β-Ga2O3 memory. This suggests the great potential of β-Ga2O3 memory for multilevel storage application.


2008 ◽  
Vol 93 (22) ◽  
pp. 223505 ◽  
Author(s):  
Jung Won Seo ◽  
Jae-Woo Park ◽  
Keong Su Lim ◽  
Ji-Hwan Yang ◽  
Sang Jung Kang

Sign in / Sign up

Export Citation Format

Share Document