Stabilization and Structural Design of Marginal Materials for Use in Low-Volume Roads

Author(s):  
J. J. E. Liebenberg ◽  
A. T. Visser

The present structural design method available for bitumen emulsion-treated materials is mostly based on the experience of road engineers and does not provide the necessary guidelines for mechanistic analysis and design. Emulsion treatment is being used more frequently to improve marginal materials and rehabilitate existing badly deteriorated road. Research was conducted on the structural performance of emulsiontreated materials under heavy-vehicle simulator (HVS) and laboratory testing. The issues considered included strength, fatigue, and permanent deformation. The results showed that the emulsion-treated material has a two-phase behavior, namely, a precracked phase and a postcracked phase. The tests also showed that the material has a high degree of resistance to permanent deformation. The laboratory tests showed that cement contributes to the strength of the material, whereas the addition of enough emulsion improves the flexibility. The HVS testing data were used to develop preliminary structural design models for fatigue and permanent deformation.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
K. J. Jenkins ◽  
C. E. Rudman ◽  
C. R. Bierman

The evolution of cold recycling using bitumen stabilisation technology has been supported by progressive research initiatives and best practice guidelines. The first generic guidelines for bitumen stabilised materials (BSMs) were published only in 2002. These guidelines provided a generic approach for the analysis of foamed bitumen and bitumen emulsion technologies. From that point, bitumen stabilisation became the common term for the inclusion of either of the two bituminous binders. The TG2 2nd edition guideline of 2009 took a bold step recognising the shear properties of the bitumen stabilised material (BSM) as the key performance indicators. In addition, advancements in structural design and application of BSMs provided practitioners with robust guidelines. The subsequent decade has provided an opportunity to interrogate data from more than 300 BSM mix designs and 69 LTPP sections. The data have led to research developments including significant new performance properties of BSMs, refined mix design methods, and updated new pavement design methods. This includes an entire design process that has been updated with a streamlined mix design procedure and a new frontier curve for the pavement number design method, as well as a new mechanistic design function. It is anticipated that the research findings and implementation of the newly developed technology will lead to improved application in BSM technology.


2003 ◽  
Vol 1819 (1) ◽  
pp. 306-313 ◽  
Author(s):  
Guillermo Thenoux ◽  
Alvaro González ◽  
Felipe Halles

The practical and theoretical principles used for development of the Chilean Structural Design Guide for Low-Volume Roads 2002 and the guide’s conceptual model and hypotheses are presented. The design guide is a simplified methodology for selection of different pavement structure alternatives for a variety of conditions (traffic, soil support capacity, and climate). The design guide provides solutions for four traffic ranges, six ranges of soil support capacity, and three climate conditions (dry, normal, and saturated). The design charts contain more than 150 solutions. Pavement structural design was solved by mechanistic analysis with the BISAR computer program and fatigue models developed in South Africa. The design guide may be considered an engineering application with upto- date research tools and results.


2014 ◽  
Vol 5 (1) ◽  
pp. 12-19
Author(s):  
Yohannes Kurniawan ◽  
Janastasha Christie Parapaga

The research goal is to identify and analyze the need of accounting information system related to the revenue cycle at PT XYZ. This paper designing the useful of accounting information systems to support the current business processes, especially on the revenue cycle process. The design method is an Object Oriented Analysis and Design (OOAD) which refers to the modeling and design requirements discipline. And the result achieved by analysis and design of accounting information systems can support current activities of the revenue cycle, especially for the documentation and store of transaction data, and generate reports in accordance with company requirements. Conclusions derived from the analysis and design is the implementation of a webbased application that can help PT XYZ to do the work in different places, such as marketing office, head office and especially at the exhibition. Index Terms - Accounting Information System, revenue cycle, OOAD 


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Chao Ma ◽  
Wei Dong Liu ◽  
Zhi Ying Tu ◽  
Zhong Jie Wang ◽  
Xiao Fei Xu

The “transboundary”, an emerging phenomenon in the Internet service ecosystem, is leading to the flourishing of innovative services. A transboundary service incorporates services, resources, and technologies from multiple domains into its business to create a particular competitive advantage and unique user experiences. It is difficult to comprehensively consider all the constraints from multiple domains to precisely design the nonfunctional characteristics of transboundary services, such as quality attributes and capability attributes. We propose a two-phase quality design method for transboundary services called value quality deployment-quality capability deployment (VQD-QCD) based on quality function deployment (QFD). Given the restrictions of transboundary services, VQD-QCD translates the value expectations of multiple stakeholders into an optimal configuration for global quality parameters (GQPs), local quality parameters, and capability parameters. Details of VQD are illustrated. Considering the inherent vagueness and uncertainty of relationships between value expectations and GQPs, and among GQPs, fuzzy least absolute regression and fuzzy nonlinear programming methods are incorporated into QFD to identify the quantitative relations between value indicators and GQPs, and among GQPs, and obtain an optimal configuration scheme for GQPs. Usability of the proposed method is validated through a case study on the “DiDi mobile transportation service”, which is a representative transboundary service in China. Compared with the current method, which is inaccurate and inefficient because its translation between value expectations and relevant quality and capability parameters is artificial and subjective, the proposed method integrates fuzzy least absolute regression and fuzzy nonlinear programming methods into QFD, which facilitate transboundary service designers to precisely and efficiently design the quality and capability characteristics of innovative services in the manner of semiautomatisation, which promotes the innovative design of transboundary services.


2005 ◽  
Vol 8 (3) ◽  
pp. 247-257 ◽  
Author(s):  
Y. Fukumoto ◽  
T. Takaku ◽  
T. Aoki ◽  
K. A. S. Susantha

This paper presents the innovative use of hot-rolled thickness-tapered mill products, longitudinally profiled (LP) plates, for the seismic performance of bridge bents of single and portal framed piers. The study involves the inelastic cyclic testing and numerical analysis of tested beam-columns and portal frames in order to evaluate the effects of tapering ratios of LP plates, penetration of yielding, and number of locally buckled panels on their structural ductility. A structural design method is proposed for the portal frames having LP panels under cyclic loadings.


2020 ◽  
Vol 316 ◽  
pp. 02001
Author(s):  
Jing Sheng ◽  
Aamir Sohail ◽  
Mengguang Wang ◽  
Zhimin Wang

In order to realize the need for lightweight automobiles through replacing steel with plastics, the research and development of the plastic clutch pump body based on the friction welding was carried out. For the clutch pump body connected by friction welding process between the upper pump body and the lower pump body, the technical requirements of pressure 14 MPa and durability (high temperature 7.0 × 104 times, room temperature 7.0 × 105) are required. The structure type of the upper and lower pump bodies of the end face welding type was proposed. Through the static analysis of the pump body and weld and the mechanical analysis under the working condition, the structure of the clutch pump body (upper and lower pump body) was determined. According to the established welding process, the pressure of the clutch pump body is more than 15 MPa, and the number of high-temperature durable circulation and the number of room temperature durable circulation also reached 7.2×104 and 7.3×105 times respectively. The results show that the structural design of a clutch pump body meets the design requirements.


Author(s):  
Robert M. Koch

Abstract The present work describes an integrated, two-phase computer-based method for fabricating marine propulsors using stereolithography. This new methodology seamlessly integrates stereolithography rapid prototyping techniques with the hydrodynamic design, structural design, and prototype testing of advanced marine propulsors in order to greatly increase the design process efficiency and reduce development time. Its use as applied to the design, fabrication, and testing of advanced propulsor prototypes for small weapon’s-scale undersea vehicles (e.g., Unmanned Underwater Vehicles (UUVs), lightweight and heavyweight torpedoes, etc.) is described in order to demonstrate specific strengths of the new method.


Sign in / Sign up

Export Citation Format

Share Document