Prediction of Stiffness of Asphalt Treated with Surfactant-Based Warm-Mix Additive

Author(s):  
Everett Crews ◽  
David T. Newton ◽  
Tejash Gandhi ◽  
Courtney A. Rice

Although the tonnage of asphalt pavements constructed with warm-mix technologies has increased rapidly in the United States in recent years, some practical aspects of warm-mix asphalt pavement construction remain incompletely defined. For example, compaction temperatures for many warm-mix technologies cannot be estimated with the standard equiviscous methods common to hot-mix asphalt. This paper reports the preliminary results of research to develop a method for predicting the stiffness (G*/sin δ) of binder treated with a surfactant-based warm-mix additive as a function of mix production temperature, mix storage and haul time, and warm-mix additive dosage. Asphalt binders were treated in the laboratory with 0.0%, 0.5%, and 1.0% of surfactant-based warm-mix additive and were heated in a rolling thin-film oven at 130°C, 145°C, and 163°C for 0, 25, 55, 85, and 115 min. Regression analyses of the laboratory data yielded equations that with good fit correlated binder stiffness with the formulation (dosage) and process variables (aging temperature and time). The predictive value of these laboratory-developed equations was found to be good when the measured stiffness of binder extracted from field mix obtained at the paver was compared with binder stiffness calculated with the laboratory-developed equations by using the plant mix temperature, total storage and haul time, and surfactant dosage.

2020 ◽  
Vol 47 (4) ◽  
pp. 355-362 ◽  
Author(s):  
Ishfaq Mohi ud Din ◽  
Mohammad Shafi Mir

The incorporation of copper slag (CS) in asphalt pavements proves to be a good substitute in replacing the natural aggregates. This reduces pavement construction cost and plays a key role in protecting the environment. The CS can be used with recycled asphalt pavement (RAP) material especially in warm mix asphalt pavements. The use of RAP not only leads to environmental benefits but also considerably saves natural resources and decreases the requirement to use virgin bitumen. The use of CS in pavement construction sector eliminates the disposal as well as leaching problems associated with it. This paper focuses on the review of studies carried out on the use of CS along with RAP in road construction. It presents and discusses the work done on the use of CS in the pavement construction sector and the use of RAP in providing the necessary stiffening effect to the asphalt pavements. It analyzes the requirement and advantage of using CS with RAP in asphalt pavements in light of previous research findings and its influence on various engineering properties in pavements. This paper also reviews the work done to study the environmental impact of using CS in asphalt mixes.


Author(s):  
Walaa S. Mogawer ◽  
Alexander J. Austerman ◽  
Robert Kluttz ◽  
Michael Roussel

A high-performance thin asphalt overlay (HPThinOL) is specified as having a thickness of 1 in. or less and is used in applications requiring high levels of rutting and fatigue resistance. HPThinOLs are used as a pavement preservation strategy and are placed on pavements that have remaining structural capacity that is expected to outlive that strategy. Current specifications for HPThinOLs generally call for a polymer-modified asphalt (PMA). However, PMA binders are more expensive than unmodified asphalt binders. This expense, coupled with the higher binder content requirement generally associated with HPThinOL, could lead to an initial higher cost in relation to other pavement preservation strategies. Although the higher initial cost can be offset by incorporating high amounts of reclaimed asphalt pavement (RAP), the use of high amounts of RAP in PMA mixtures might adversely affect the mixture performance (stiffness, cracking, or workability). Warm-mix asphalt (WMA) technology may improve the workability of HPThinOL that incorporates high RAP content and PMA binders. This study evaluated the effect of PMA binders, high RAP content, and WMA technology on the stiffness, resistance to reflective cracking, moisture susceptibility, and workability of HPThinOL mixtures. PMA binders and high RAP content increased the stiffness of HPThinOL significantly; however, the use of WMA technology lowered mixture stiffness and improved workability. PMA may improve the cracking resistance, moisture susceptibility, and rutting resistance of high-RAP HPThinOL mixtures, depending on whether a WMA technology is used.


2015 ◽  
Vol 747 ◽  
pp. 238-241
Author(s):  
Wan Adilah Ismail ◽  
Intan Rohani Endut ◽  
Sit Zaharah Ishak

Sustainable asphalt pavement is important in decreasing material costs by improving the existing material such as modified asphalt binders. It is also needed to provide a quality riding for road users. In achieving quality riding, the material selection and mix design must be correctly examined before using in pavement construction. Then, the aims of this study are to determine suitability of material selected by examining the aggregate properties and modified asphalt binder. In modified asphalt binder, 6% of polyacrylate polymer was added as an additive in 500g of binder content to dissolve. It was checked through Superpave gyratory compactor in determining air voids samples in term of height after compacted. The samples were mixed with different percentages of binder content; 5%, 5.5%, 6% and 6.5% to produce control and polyacrylate modified samples. 8 gyratory for Ninitialand 100 gyratory for Ndesignwere used in compaction of samples to determine air voids in term of height. The results show that 5.5% of binder content of polyacrylate modified samples has lower air voids compare than control samples. Thus, modified binders are able to minimize binder usage and save natural sources and also cost by improving bonding between mixtures to prevent pavement failure


2021 ◽  
Vol 13 (6) ◽  
pp. 3330
Author(s):  
Abdalrhman Milad ◽  
Ahmed Suliman B. Ali ◽  
Ali Mohammed Babalghaith ◽  
Zubair Ahmed Memon ◽  
Nuha S. Mashaan ◽  
...  

The use of geopolymer in pavement constructions is strongly encouraged. Many studies have demonstrated the vast potential of using industrial-by-products-based geopolymers. This paper discusses the modification of asphalt binders with geopolymers, namely geopolymer-modified asphalt (GMA) and geopolymer-modified asphalt mixture (GMAM). In addition, curing geopolymer materials, engineering properties, production techniques, and prospective utilisation in the pavement construction, such as durability and sustainability, are also discussed. The literature review showed that many industrial by-products, including red mud, blast furnace slag, fly ash, and mine waste, are used to produce geopolymers because of the metal components such as silicon and aluminium in these materials. The geopolymers from these materials influence the rheological and physical properties of asphalt binders. Geopolymers can enhance asphalt mixture performance, such as stability, fatigue, rutting, and low-temperature cracking. The use of geopolymers in asphalt pavement has beneficial impacts on sustainability and economic and environmental benefits.


CivilEng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 811-822
Author(s):  
Bharath Gottumukkala ◽  
Sudhakar Reddy Kusam ◽  
Vivek Tandon ◽  
Amaranatha Reddy Muppireddy ◽  
Ramya Sri Mullapudi

The use of recycled asphalt pavement (RAP) in pavement construction reduces the project cost and helps in conserving the naturally occurring aggregates. To incorporate RAP in hot mix asphalt, it is vital to know the amount and quality of the reclaimed binder. Three new asphalt binders were selected for this investigation. RAP material from one source was blended in different proportions with VG-10 and VG-30. Penetration, softening point, G */sin δ, G * sin δ and binder fatigue life Nf (from Linear Amplitude Sweep test) values of different blends were compared. The milled RAP aggregate gradation varied from source to source due to factors such as the gradation of the mix used in the existing layer, milling method and processing of RAP material. This variability controls the use of higher proportions of RAP in new mixes. To investigate the effect of RAP gradation on the proportion of RAP that can be used in the new mix, RAP sources with different gradation (three dense and two gap gradations) were selected. The proportion of RAP that can be used for preparing mixes with these gradations varied significantly with the source of RAP, and the target gradation. In most cases, it was found that allowable RAP percentages are smaller for the gap gradations compared to those permitted for dense gradations. The proportion of RAP in a mix can be increased by selecting an appropriate gradation for a RAP source or by using a suitable RAP source for a given gradation.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Mohammad Ashiqur Rahman ◽  
Rouzbeh Ghabchi ◽  
Musharraf Zaman ◽  
Syed Ashik Ali

AbstractDespite significant economic and environmental benefits, performance of warm mix asphalt (WMA) containing reclaimed asphalt pavement (RAP) remains a matter of concern. Among the current WMA technologies, the plant foaming technique (called “foamed WMA” in this study) has gained the most attention, since it eliminates the need for chemical additives. In the present study, the laboratory performance, namely rutting and moisture-induced damage potential of foamed WMA containing RAP were evaluated and compared with those of similar hot mix asphalt (HMA) containing identical amount of RAP. Dynamic modulus, Hamburg wheel tracking (HWT) and flow number tests were performed to assess the rutting resistance of the mixes. Also, stripping inflection point from HWT tests and tensile strength ratio after AASHTO T 283 and moisture induced sensitivity test (MIST) conditioning were used to evaluate the moisture-induced damage of asphalt mixes. It was found that MIST conditioning effectively simulates the moisture-induced damage and can capture the propensity of asphalt mixes to moisture damage more distinctly compared to AASHTO T 283 method due to application of cyclic loadings. The foamed WMA was found to exhibit higher rutting and moisture-induced damage potential due to lower mixing and compaction temperatures compared to HMA. However, the increase in RAP content was found to reduce rutting and moisture-induced damage potential for WMA. Therefore, the lower stiffness of foamed WMA may be compensated with the addition of stiffer binder from RAP.


2021 ◽  
Vol 13 (9) ◽  
pp. 5096
Author(s):  
Eui-Yul Choi ◽  
Woo Jeong Cho

A personal watercraft (PWC) is a vessel that uses an inboard motor powering a water jet pump as a source of power and is operated by a person sitting, standing, or kneeling. Maneuvering a PWC is different from operating a motor vehicle or boat. An obstacle cannot be avoided by slowing down and turning the watercraft; throttle power is required to turn or maneuver the PWC. The watercraft stops only by drifting or turning sharply. The study examined sixty court decisions published in LexisNexis databases of the United States over the last decade. Cases included individuals injured while operating a PWC as a driver, passenger, or as a result of contact with a watercraft. A content analysis identified items to be used in the study. Crosstab and logistic regression analyses were used to identify demographic information and the characteristics of those who succeeded in a court of law. One-third of the cases were successful; adults, males, and the party who sustained a severe injury were more successful in a court of law with the exception of the statistically significant factors (high risk maneuvers and sharp turns). Among the additional results, we should be aware that insurance companies may not pay; additionally, it is unwise to loan a PWC to a female who has no experience.


Sign in / Sign up

Export Citation Format

Share Document