scholarly journals DISTRIBUTION OF THE SEDIMENTARY COVER IN THE EQUATORIAL SEGMENT OF THE ATLANTIC OCEAN

Author(s):  
S.Yu. Sokolov ◽  
◽  
K.O. Dobrolyubova ◽  
V.N. Efimov ◽  
A.V. Koltsova ◽  
...  

The thickness of the Atlantic Equatorial segment sedimentary cover decreases with the distance from the continental source of mass removal and increases slightly with the distance from the Mid-Atlantic Ridge (MAR). Background sedimentation makes a small contribution to the total sedimentary volume near the continents and the major contribution in basins with the formation of sedimentary bodies with a thickness of no more than 500 m. Sedimentary bodies with a thickness up to 1000 m near MAR are the results of unloading of bottom currents near structural barriers in topography and in fault troughs. The total thickness tends to increase from north to south on the western flank of the MAR. The multidirectional spatial migration of the basement depressions filled with sediments is revealed. To the west of the MAR, contrasting acoustic stratification and tectonic deformations of sediments were found. To the east of the MAR, deformations are rare and expressed by piercing structures and normal faults. Anomalies of the "bright spot" type associated with local manifestations of magmatism forming aligned high-amplitude reflectors are revealed. Normal faulting in the passive parts of the transforms zones indicates the presence of local stretching, which is part of the simple shear paragenesis. In the troughs, sediment deposition from the bottom currents, which forms channel drifts, is revealed.

2020 ◽  
Author(s):  
Daniel Muñoz-López ◽  
Gemma Alías ◽  
David Cruset ◽  
Irene Cantarero ◽  
Cédric M. Jonh ◽  
...  

Abstract. Calcite veins precipitated in the Estamariu thrust during two tectonic events decipher the temporal and spatial relationships between deformation and fluid migration in a long-lived thrust and determine the influence of basement rocks on the fluid chemistry during deformation. Structural and petrological observations constrain the timing of fluid migration and vein formation, whilst geochemical analyses (δ13C, δ18O, 87Sr/86Sr, clumped isotope thermometry and elemental composition) of the related calcite cements and host rocks indicate the fluid origin, pathways and extent of fluid-rock interaction. The first tectonic event, recorded by calcite cements Cc1a and Cc2, is related to the Alpine reactivation of the Estamariu thrust, and is characterized by the migration of meteoric fluids, heated at depth (temperatures between 56 and 98 °C) and interacted with crystalline basement rocks before upflowing through the thrust zone. During the Neogene extension, the Estamariu thrust was reactivated and normal faults and shear fractures with calcite cements Cc3, Cc4 and Cc5 developed. Cc3 and Cc4 precipitated from hydrothermal fluids (temperatures between 127 and 208 °C and between 102 and 167 °C, respectively) derived from crystalline basement rocks and expelled through fault zones during deformation. Cc5 precipitated from low temperature meteoric waters percolating from the surface through small shear fractures. The comparison between our results and already published data in other structures from the Pyrenees suggests that regardless of the origin of the fluids and the tectonic context, basement rocks have a significant influence on the fluid chemistry, particularly on the 87Sr/86Sr ratio. Accordingly, the cements precipitated from fluids interacted with crystalline basement rocks have significantly higher 87Sr/86Sr ratios (> 0.710) with respect to those precipitated from fluids that have interacted with the sedimentary cover (


2016 ◽  
Vol 187 (4-5) ◽  
pp. 187-215 ◽  
Author(s):  
François Fournier ◽  
Aurélie Tassy ◽  
Isabelle Thinon ◽  
Philippe Münch ◽  
Jean-Jacques Cornée ◽  
...  

AbstractThe seaward extension of onshore formations and structures were previously almost unknown in Provence. The interpretation of 2D high-resolution marine seismic profiles together with the integration of sea-bottom rock samples provides new insights into the stratigraphic, structural and paleogeographic framework of pre-Messinian Salinity Crisis (MSC) deposits of the Provence continental shelf. Seven post-Jurassic seismic units have been identified on seismic profiles, mapped throughout the offshore Provence area and correlated with the onshore series. The studied marine surface and sub-surface database provided new insights into the mid and late Cretaceous paleogeography and structural framework as well as into the syn- and post-rift deformation in Provence. Thick (up to 2000 m) Aptian-Albian series whose deposition is controlled by E-W-trending faults are evidenced offshore. The occurrence and location of the Upper Cretaceous South-Provence basin is confirmed by the thick (up to 1500 m) basinal series downlaping the Aptian-Albian unit. This basin was fed in terrigenous sediments by a southern massif (“Massif Méridional”) whose present-day relict is the Paleozoic basement and its sedimentary cover from the Sicié imbricate. In the bay of Marseille, thick syn-rift (Rupelian to Aquitanian) deposition occurred (>1000 m). During the rifting phase, syn-sedimentary deformations consist of dominant N040 to N060 sub-vertical faults with a normal component and N050 drag-synclines and anticlines. The syn-rift and early post-rift units (Rupelian to early Burdigalian) are deformed and form a set of E-W-trending en echelon folds that may result from sinistral strike-slip reactivation of N040 to N060 normal faults during a N-S compressive phase of early-to-mid Burdigalian age (18–20 Ma). Finally, minor fault reactivation and local folding affect post-rift deposits within a N160-trending corridor localized south of La Couronne, and could result from a later, post-Burdigalian and pre-Pliocene compressive phase.


1978 ◽  
Vol 18 (1) ◽  
pp. 109
Author(s):  
R. B. Mariow

The Golden Beach closed anticlinal structure lies five kilometres offshore in the Gippsland Basin. Golden Beach 1A was drilled in 1967 near the crest of the structure and intersected a gas column of 19 m (63 feet) at the top of the Latrobe Group (Late Eocene) where most of the hydrocarbon accumulations in the Gippsland Basin have been found. The gas-water contact lies at a depth of 652 m (2139 feet) below sea level.On seismic data recorded over the structure, a high amplitude flat-lying event was interpreted as a bright 'flat spot' at the gas-water contact. Reprocessing of the seismic data enhanced the bright spot effect and enabled the areal extent of the gas zone to be mapped. The presence of the gas also leads to a polarity reversal of the top of the Latrobe Group seismic reflector over the gas accumulation.Seismic data from other structures containing hydrocarbons in the Gippsland Basin support the concept that bright spots and flat spots are more likely to be associated with gas than with oil accumulations, and that the observed bright spot effect decreases with increasing depth.


2019 ◽  
Vol 11 (24) ◽  
pp. 2923 ◽  
Author(s):  
Julián Martínez ◽  
Javier Rey ◽  
Senén Sandoval ◽  
Mª Camen Hidalgo ◽  
Rosendo Mendoza

The aim of this study is to prove the effectiveness of two electrical geophysical prospecting techniques, namely electrical resistivity tomography (ERT) and induced polarization (IP), in locating thin vein structures of metal sulphides embedded in Palaeozoic materials underlying a sedimentary cover. For this purpose, a Quaternary basin known as La Garza was selected, located in the mining district of Linares-La Carolina (Southern Spain). Galena (PbS) veins appear abundantly throughout this area, hosted in the Palaeozoic granitic bedrock. The studied veins show thicknesses from 0.5 to 2.0 m, and most present a vertical planar distribution. The veins lose their continuity below the sedimentary cover due to normal fractures that control the subsidence of the basin. During the 1980s, geophysical research campaigns were carried out in La Garza using vertical electrical sounding and failed in detecting the hidden veins. For this reason, to carry out this study, a closed regular mesh was designed, composed by eight ERT and IP profiles, with variable lengths between 315 and 411 metres. An electrode spacing between 5 and 7 metres was selected, thus allowing the granite bedrock to be reached without significantly reducing the resolution capabilities of the method. Even though ERT and IP are well-known geophysical techniques for mapping ore deposits, this is a case study that shows the advantages of the simultaneous use of both techniques (ERT and IP), over their individual application. ERT allows for reconstructing the morphology of the basin and the fractures that control it due to high-resistivity contrast between the overlying sedimentary cover and the underlaying granitic basement. However, it cannot provide any insights about their degree of mineralization. At this point, it is the IP technique that makes it possible to differentiate which are the mineralized structures. Some of these fractures produce high (above 50 mV/V) and moderate (below 50 mV/V) chargeability values, suggesting the existence of several unexploited metal veins. Furthermore, the derived models enable researchers to analyse the morphology of this sedimentary basin controlled by normal faults.


2018 ◽  
Vol 10 (3) ◽  
pp. 57 ◽  
Author(s):  
Augustin P. Moussango Ibohn ◽  
François Mvondo Owono ◽  
Bernard Njom ◽  
Simon P. Mbog Bassong ◽  
Jean-Paul Sep Nlomngan ◽  
...  

Morphometric parameters extracted fromDEM (90 m) combined with field and literature data of Edéa region, a portion of Cameroonian passive margin located between 3°43’ - 4°00 ’N and 10°00’ - 10°15’E, were used to constraint the present day landscape and forces that have acted and is currently acting on its evolving topography. The obtained results show that the Sanaga Fault is one of the main driver forces responsible for this evolution. Set up during the Pan-African orogeny, this fault which affects a good part of the Proterozoic basement and Tertiary sedimentary cover has developed two systems of secondary active faults different by their nature and characteristics, quite visible in the Edéa region: the Ekitté System, shearing normal faults with a N-S to NNE-SSW strike and the Sanaga-Batignol System shearing directional faults with a NW-SE strike. Most of these faults constitute the river beds and play iteratively, deeply affecting both the drainage system and the landscape. Morphometric indices used reveal that the landscape has been rejuvenated and experiences uplifts and tiltings to present-day due to these reactivations. Structural and petrographical analyses confirm the current role played by the Sanaga Fault and its systems in the segmentation of the region into block tectonics and the occurrence of pseudotachylites and tectonic breccia. Block tectonics, pseudotachylites, tectonic breccias are accompanied with the recent earth tremors with magnitudes comprised between 2.6 and 4.0 on the Richter scale highlighting the neotectonics in this region.


Oceanology ◽  
2017 ◽  
Vol 57 (5) ◽  
pp. 753-755 ◽  
Author(s):  
R. Yu. Tarakanov ◽  
E. G. Morozov ◽  
N. I. Makarenko ◽  
D. I. Frey ◽  
T. A. Demidova

2018 ◽  
Vol 55 (12) ◽  
pp. 1297-1311 ◽  
Author(s):  
Wei Yang ◽  
Xiaoxing Gong ◽  
Wenjie Li

Anomalously high-amplitude seismic reflections are commonly observed in deeply buried Ordovician carbonate strata in the Halahatang area of the northern Tarim Basin. These bright spots have been demonstrated to be generally related to effective oil and gas reservoirs. These bright spot reflections have complex geological origins, because they are deeply buried and have been altered by multi-phase tectonic movement and karstification. Currently, there is no effective geological model for these bright spots to guide hydrocarbon exploration and development. Using core, well logs, and seismic data, the geological origins of bright spot are classified into three types, controlled by karstification, faulting, and volcanic hydrothermal activity. Bright spots differing by geological origin exhibit large differences in seismic reflection character, such as reflection amplitude, curvature, degree of distortion, and the number of vertically stacked bright spots in the seismic section. By categorizing the bright spots and the seismic character of the surrounding strata, their geological origins can after be inferred. Reservoirs formed by early karstification were later altered by epigenetic karstification. Two periods of paleodrainage further altered the early dissolution pores. In addition, faults formed by tectonic uplift also enhanced the dissolution of the flowing karst waters. Some reservoirs were subsequently altered by Permian volcanic hydrothermal fluids.


2020 ◽  
Vol 8 (4) ◽  
pp. SR45-SR51
Author(s):  
Peter Reilly ◽  
Roberto Clairmont ◽  
Heather Bedle

In the shallower regions of the 3D Nimitz seismic survey, there exist multiple interesting bright seismic amplitude anomalies. These anomalies, or funny looking things, occur in a confined spatial and temporal region of the seismic. They have a concave-up seismic appearance along the cross section. Bright seismic amplitudes can be a direct hydrocarbon indicator, or they can be representative of strong lithologic contrasts and/or acquisition artifacts. We have set out to investigate misinterpreted seismic anomalies along cross-sectional lines. Therefore, we apply seismic attributes to indicate that these bright spot features, which we interpret to be submarine gullies looking along time-slice intersections, can possibly be mistaken for hydrocarbon anomalies in a cross-sectional view. However, we cannot fully rule out the presence of hydrocarbons because it is common for gas sands to create similar anomalies. Previously drilled wells within the survey (Korimako-1 and Tarapunga-1) point to a lack of hydrocarbon potential in the subsurface. Although it is possible that these bright spots are due to hydrocarbon presence, we develop a more likely hypothesis: The lithology of the interfluve sediments is similar to the gully-margin drapes but differs from the gully sediment fill. Funny looking thing (FLT): Submarine gullies Seismic appearance: High-amplitude spotted features Alternative interpretations: Lithologic anomalies, gas seeps, bright spots Features with a similar appearance: Gas accumulation, sediment fills in limestone paleocaves Formation: Giant Foresets Formation Age: Pleistocene Location: Taranaki Basin, New Zealand Seismic data: Nimitz 3D (cropped volume) Analysis tools: Curvature, instantaneous frequency, and sweetness attributes; well reports


1977 ◽  
Vol 14 (6) ◽  
pp. 1374-1401 ◽  
Author(s):  
J. Wm. Kerr

Cornwallis Fold Belt is a north-trending anticlinorium more than 650 km (400 mi) long, that extends from the Precambrian Shield to the Sverdrup Basin. It is the folded and faulted sedimentary suprastructure that overlies Precambrian crystalline basement rocks of the Boothia Horst. The horst and fold belt represent lower and intermediate levels of the Boothia Uplift. Evolution of the Cornwallis Fold Belt includes two phases, formation and modification.Formation. The basic structure of the Cornwallis Belt, a relatively simple, steep-sided, north-plunging anticlinorium, was formed in the interval from Proterozoic to Late Devonian time during several discrete phases of deformation that involved a similar stress pattern. These phases can be attributed to pulses of differential vertical uplift of the underlying Boothia Horst. The earliest phases involved periods of gentle arching of the crystalline basement and sedimentary cover in late Proterozoic and early Paleozoic times. The fold belt was formed mainly by the Cornwallis Disturbance (new name) which involved further differential vertical uplift, and comprised several pulses: (1) Early Silurian, mild, affecting only part of the belt; (2) Early Devonian, very strong, affecting the entire belt; (3) late Early Devonian, moderately strong, affecting the entire belt; (4) Late Devonian, moderately strong, affecting the entire belt. Each pulse was a cycle that began with uplift and erosion of the fold belt and shedding of detritus into the adjacent basins, and was followed by broader regional subsidence and the resumption of deposition on the belt. Between pulses of uplift there was regional subsidence, during which the fold belt subsided less than the flanking basins and received less sediments.Differential vertical displacement originated in the crystalline basement, occurring along fault zones that define the Boothia Horst, and are parallel to and controlled by a steep to vertical north-trending foliation. Faults extend into the sedimentary suprastructure comprising the overlying Cornwallis Fold Belt, and change gradually upward from vertical faults to high-angle reverse faults, overturned anticlines, and finally to asymmetric anticlines. Because the fold belt plunges north, this gradational sequence occurs from south to north in the exposed part of the fold belt. Structures formed by early pulses were rejuvenated by later pulses with the same sense of movement.Modification. The basic structure of the Cornwallis Fold Belt was modified by other types of deformation during the interval from Late Devonian to the present. Many of the preexisting faults were reactivated, but with a different sense of movement. During the Late Devonian to Middle Pennsylvanian Ellesmerian Orogeny, southward overriding of upper levels of the sedimentary succession produced folds in the rocks east and west of the Cornwallis Fold Belt which had not been previously deformed and could easily be displaced southward on an underlying décollement surface. The north-trending Cornwallis Fold Belt, however, was an obstacle to southward overriding in which the effects of overriding were reduced. Zones of interference structures developed near the margins, guided by older basement-controlled structures. Left-lateral faults were developed on the western margin and right-lateral movement is probable on the eastern margin.The Cornwallis Fold Belt extends an unknown distance northward beneath the younger rocks of the Sverdrup Basin. These younger rocks were deposited during a long period of northward downwarping that began in mid-Mississippian time. This same downwarping caused an abrupt increase in the northward plunge of the fold belt.During the Cretaceous–Tertiary Eurekan Rifting Episode the Cornwallis Fold Belt was fragmented by block faulting. The horsts form islands, and the grabens form submarine channels, some of which contain thick sections of semiconsolidated Cretaceous–Tertiary sediments. Numerous other normal faults that occur within the fold belt probably formed at this time. Cretaceous–Tertiary faults within the Cornwallis Fold Belt have a rectilinear pattern that was inherited from preexisting structures.


2020 ◽  
Author(s):  
Elena Russo ◽  
Alessandro Tibaldi ◽  
Fabio Luca Bonali ◽  
Federico Pasquarè Mariotto ◽  
Páll Einarsson ◽  
...  

<p>Unravelling the kinematics, development and origin of the structures along a volcano-tectonic rift is of paramount importance for understanding plate separation, seismicity, volcanic activity and the associated hazards. Here, we focus on an extremely detailed survey of the Holocene deformation field along the Northern Volcanic Zone of Iceland, the northernmost point of emergence of the Mid-Atlantic Ridge. The study of this extremely dynamic rift is also useful for a better comprehension of how mid-oceanic ridges work. The study is based on extensive field and unmanned aerial vehicle surveys performed over the last four years, completed by about 6000 measures collected at 1633 sites on fault strike, dip and offset, and fracture strike, dip, dilation direction and dilation amount. The rift, named Theistareykir Fissure Swarm, is composed of N-S to NNE-SSW-striking normal faults and extension fractures affecting an area 8 km-wide and 34 km-long. The computed overall spreading direction is N111° averaged during Holocene times, with values of N125° to the north and N106° to the south. The kinematics is characterised by the presence of complex components of right-lateral and left-lateral strike-slip motions, with a strong predominance of right-lateral components along structures parallel and coeval to the rift zone. The surveyed 33 Holocene faults (696 sites of measurement) along the central part of the rift show two opposite directions of fault/rift propagation, based on fault slip profile analyses. We discuss the possible causes of these characteristics and analyse in detail the interaction of both faults and extension fractures with the WNW-ESE transform Tjornes Fracture Zone, and in particular with the parallel right-lateral Husavik-Flatey Fault in the central part of the rift, and the Grimsey Lineament to the north. We also assess the role of: i) repeated dyke intrusions from the magma chamber outward along the plate margin, ii) regional tectonic stresses, iii) mechanical interaction of faults, and iv) changes in the rheological characteristics of rocks.</p>


Sign in / Sign up

Export Citation Format

Share Document