scholarly journals О ПРОДУКТИВНОСТИ И ПЕТРОФИЗИЧЕСКИХ ХАРАКТЕРИСТИКАХ КОЛЛЕКТОРОВ СЕВЕРНОЙ ЧАСТИ БАКИНСКОГО АРХИПЕЛАГА

2019 ◽  
Vol 1 (9(39)) ◽  
pp. 21-28
Author(s):  
Мухтарова Х. З. ◽  
Насибова Г. Д.

In the article was showed complex results of petro physical testing sample of rocks from taken digging prospecting-development wells which are widen productive unit sediments of the northern part of the Baku arxipelago. An average values of granulometric composition of rocks of productive unit the above areas by the section have been recount. The matter dependence of permeability from porosity and porosity from depth was solved. The research showed that the same named and the same age rocks physical property change at the result of geological- physical process and getting different prices. The reservoir properties of rocks of productive unit have been learned. The physical properties of rocks of productive unit have been shown in the table. The reservoir properties of different type of rocks which take part in the geological structure of oil and gas bearing areas and their spreading conformity to natural laws are shown in the table.Dependence between physical parameters for the individual kinds of rocks, dependence between physical properties and material structures are established.

Author(s):  
V. Sultanov ◽  
L. Sultanov

The complex results of petrophysical testing of rocks, taken from prospecting-development wells of Duvanni-deniz, Sangachal-deniz, Bulla-deniz, Garasu and etc. areas, where the sediments of productive stratum are widely expanded, have been given. Average values of granulometric composition of rocks of productive unit of the above areas by the section have been recounted. The problem of dependence of permeability on porosity and depth was solved. Dependence between physical parameters for the individual kinds of rocks, dependence between physical properties and material structures are established. The results of various petrophysical research methods show that the filtration capacitance properties, in general, deteriorate with depth. However, in certain cases, in clay and carbonate rocks, reservoir properties can improve, due to the appearance of secondary porosity under relatively stringent thermobaric conditions. The histograms, which consist of average values of granulometric composition of productive stratum rocks when crossing some places of archipelago are constructed, the problems of dependence of permeability on porosity and depth were solved. The researches showed, that the physical process of the same- named and same-aged features rocks change in the result of geological-physical processes, getting different values. It's noticed, that the porosity and permeability are increasing from north-west to south-east by changing lithological composition.


2019 ◽  
Vol 1 ◽  
pp. 55-62
Author(s):  
Latif Sultanov ◽  
Nariman Narimanov ◽  
Afet Samadzadeh

At the Neft Dashlari deposit, in order to study the lithologic-petrographic and reservoir properties of deep-seated formations, as well as the regularity of their changes with depth, carbonate content, porosity, permeability, density, grain size distribution and speeds of propagation of longitudinal seismic waves from samples taken from exploration and prospecting wells. The minimum, average and maximum limits of the physical properties of the rocks were established. The dependence of reservoir properties and other physical factors on the depth of occurrence of the latter is considered. Our analysis of the influence of physical parameters of rocks on their permeability allows us to conclude that the main influence on permeability is exerted by the lithofacial composition, degree of sorting, carbonate content and type of porosity. However, the increased carbonate content of rocks can stimulate the appearance of fracturing in them, as well as cavernous leaching voids in the case of circulation of water in the formed cracks. These processes have a positive effect on reservoir properties, mainly on the permeability of high-carbonate rocks. Analyzing the results of these researches, it is possible to predict the oil and gas potential of deep-lying layers along with those already exploited.


2019 ◽  
Vol 10 (2) ◽  
pp. 459-470
Author(s):  
V. A. Kontorovich ◽  
В. V. Lunev ◽  
V. V. Lapkovsky

The article discusses the geological structure, oil‐and‐gas‐bearing capacities and salt tectogenesis of the Anabar‐Khatanga saddle located on the Laptev Sea shore. In the study area, the platform sediments are represented by the 14‐45 km thick Neoproterozoic‐Mesozoic sedimentary complexes. The regional cross‐sections show the early and middle Devonian salt‐bearing strata and associated salt domes in the sedimentary cover, which may be indicative of potential hydrocarbon‐containing structures. Diapirs reaching the ground surface can be associated with structures capable of trapping hydrocarbons, and typical anticline structures can occur above the domes buried beneath the sediments. In our study, we used the algorithms and software packages developed by A.A. Trofimuk Institute of Petroleum Geology and Geophysics (IPGG SB RAS). Taking into account the structural geological features of the study area, we conducted numerical simulation of the formation of salt dome structures. According to the numerical models, contrasting domes that reached the ground surface began to form in the early Permian and developed most intensely in the Mesozoic, and the buried diapirs developed mainly in the late Cretaceous and Cenozoic.


2013 ◽  
Vol 813 ◽  
pp. 225-229
Author(s):  
Bin Zhao ◽  
Jian Guo Li ◽  
Shao Wei Sun ◽  
Xin Peng Zhou ◽  
Zhen Bin Wang ◽  
...  

As the lack of work on comprehensive rock physical properties in deep geophysical exploration in Yudu-Ganxian ore concentration area, this paper focuses in comprehensive and systematic study about the comprehensive rock physical properties in this area. Known from the rock (ore) actual distribution in this area, this paper presents the comprehensive rock physical properties research method of the area, which use varieties of techniques to collect specimens systematic, determine the physical parameters, and even study the distribution characteristics and variation law of rock (ore) integrated rock physical properties parameters. In this paper, the results can provide the new information about integrated rock physical property parameters for understanding and explaining the integrated geophysical anomaly, providing the basis for the future in Nanling to carry out deep geophysical three-dimensional exploration and deep metallogenic prognosis.


2020 ◽  
Vol 244 ◽  
pp. 418-427
Author(s):  
Ramiz Gasumov ◽  
Eldar Gasumov ◽  
Yulia Minchenko

The paper considers the features of the underground storages (US) construction in depleted oil and gas condensate fields (DOGCFs). The requirements for the structure of the formation, corresponding to the parameters of the object for possible US creation are presented. The influence of geological, hydrogeological, mining and technical rock formation conditions on the reliability and tightness of underground storages, including underground gas storages, has been evaluated. The necessary conditions for the US design are analyzed at the example of the Ach-Su oil and gas condensate field, in the presence of a well-explored trap with acceptable parameters for the construction of an underground storage. An important aspect is the geological conditions that meet the criteria for selecting the object: the required structure, the absence of fracturing faults, high reservoir properties of the formation, a sufficient volume of the deposit for the storage. Geological conditions lay the basis for determining the individual characteristics of the US construction technology at each DOGCF. The refined results for the current gas-saturated pore volume and the rate of pressure drop in the formation are presented, which makes it possible to select improved technological indicators in the course of  operation of the created US. In order to select the optimal option for the design and construction of the US, the results of economic and geological scenarios analysis were studied concurrently with the capabilities of the technological operation of the object and transport system, which can ensure the maximum daily production of the storage.


2021 ◽  
Vol 6 (4) ◽  
pp. 22-31
Author(s):  
Guzel R. Vahitova ◽  
Anzhela A. Kazaryan ◽  
Timur F. Khaybullin

Aim. Due to the depletion of reserves of the main oil and gas complexes, the greatest interest is attributed to hard-to-recover reserves, complex-built objects of the sedimentary cover, the development of which was unprofitable until recently. One of these is the oil-bearing complex of the Achimov deposits of the Malobalykskoye field in Western Siberia. This article is devoted to the facies analysis and typification of reservoir rocks of the Achimov deposits in order to increase the reliability of determining the boundaries of the reservoirs, their interpretation and assessment of the petrophysical properties of the reservoirs. At the same time, special attention is paid to the facies analysis, which determines the characteristics of the reservoir. The Achimov deposits are a promising source of increasing resources and maintaining production at a high level. With their increasing importance, there are problems that complicate the search and assessment of deposits. Such problems include a high degree of reservoir compartmentalization, sharp facies variability, complex pore space structure, high clay content, low permeability values, etc. Materials and methods. The work is based on a comprehensive interpretation of the data of the lithological description of the core, the results of laboratory studies of the core and well logging data analysis of the Achimov deposits of the Malobalykskoye field. The methods used in the interpretation of GIS data, statistical analysis, comparison. Due to the fact that the reservoir properties of sand bodies are determined by the peculiarities of their formation in different conditions of sedimentation, it is necessary to establish a relationship between the petrophysical characteristics of rocks and their facies nature by substantiating petrofacies models. The use of the latter in geological modeling makes it possible to more effectively predict the reservoir properties (reservoir properties) of various facies lithotypes. Results. The paper presents the results of facies analysis and typification of the reservoirs of the Achimov deposits of the Malobalykskoye field, on the basis of which the boundaries of the reservoirs and the effective oilsaturated thicknesses were refined. Conclusions. Based on the results of the study, it can be concluded that it is necessary to develop refined petrophysical models for reservoirs with complex geological structure that take into account the facies features of rocks.


2020 ◽  
Vol 43 (3) ◽  
pp. 350-363
Author(s):  
L. A. Rapatskaya

The study aims to analyze the relationship between the redetermination of the complexity of the geological structure of the Verkhnechonsky oil and gas condensate field and the schedule adjustment of the field development plans. The paper uses the data on the exploration and production wells obtained from the pilot operation of JSC Verkhnechonskneftegaz, the geophysical work results, and the research materials publicly available in the press. The geological structure of the Verhnechonskoye oil and gas condensate field is unique in its complexity. This is due to the following factors: a combination of tectonic disturbances accompanied by the intrusion of traps; high mineralization of the reservoir water; sharp variability of the filtration and reservoir properties of the producing horizons by area and section due to the unevenness of the lithological composition of the reservoirs, their salinization and complete pinch-out. The development system of any field should take into account the peculiarities of the field’s tectonic and lithological-facies structure, and meet specific technical and economic requirements for drilling and operating wells. The complexity of the field structure requires a thorough selection of a development system that inevitably changes as the features of the field structure are studied, e.g. vertical drilling suggested at the initial stage of the filed development was shortly after replaced with inclined-horizontal drilling with the calculation of two options. Within the pilot operation project of the Verkhnechonsky field, JSC Verkhnechonskneftegaz has developed two variants of uniform grids of directional and horizontal wells with pattern flooding for the most explored deposits of the Verkhnechonsky horizon of blocks I and II. Because of the intensive processes of the reservoirs’ secondary salinization, the flooding method required a study of the reservoir water composition. However, the proposed drilling plan using a downhole engine and gamma-ray logging could not ensure the wellbores ducting through the most productive sections of the horizon, therefore, the flow rates of some directional and horizontal wells were not high enough. To increase the drilling efficiency, the specialists of the Drilling Department (JSC Verhnechonskneftegaz), together with the Department of Geology and Field Development (Schlumberger Ltd.), proposed a new methodology that increases the drilling efficiency by using a rotary-controlled system, logging-while-drilling, and geosteering. Thus, the development system of the Verkhnechonsky oils and gas condensate field was changing in the process of specifying the field’s geological structure, anisotropy reservoir properties, and the thickness of the producing horizons in size and cut, their salinization and pinch-out, and the composition of the reservoir waters.


Sign in / Sign up

Export Citation Format

Share Document