The Preliminary Results of Rock Physical Properties in Yudu-Ganxian Ore Concentration Area

2013 ◽  
Vol 813 ◽  
pp. 225-229
Author(s):  
Bin Zhao ◽  
Jian Guo Li ◽  
Shao Wei Sun ◽  
Xin Peng Zhou ◽  
Zhen Bin Wang ◽  
...  

As the lack of work on comprehensive rock physical properties in deep geophysical exploration in Yudu-Ganxian ore concentration area, this paper focuses in comprehensive and systematic study about the comprehensive rock physical properties in this area. Known from the rock (ore) actual distribution in this area, this paper presents the comprehensive rock physical properties research method of the area, which use varieties of techniques to collect specimens systematic, determine the physical parameters, and even study the distribution characteristics and variation law of rock (ore) integrated rock physical properties parameters. In this paper, the results can provide the new information about integrated rock physical property parameters for understanding and explaining the integrated geophysical anomaly, providing the basis for the future in Nanling to carry out deep geophysical three-dimensional exploration and deep metallogenic prognosis.

2020 ◽  
Vol 57 (11) ◽  
pp. 1349-1364
Author(s):  
Arthur Menier ◽  
Régis Roy ◽  
Grant Harrison ◽  
Ryan W. Zerff ◽  
Dwayne Kinar

Infrared (IR) spectroscopy has been used to characterize clay and clay-sized minerals present in drill cores that are associated with unconformity-related uranium deposits. Physical properties have been measured on samples to gain empirical data about the rock types and associated relationships with geophysical survey data. These data can be used to build three-dimensional geological models and constrain geophysical inversions. The objective of this study is to verify whether a relationship exists between rock physical properties and IR spectral mineralogy. Physical properties were measured on 427 core samples collected from the Martin Lake project, which is located in the southeastern Athabasca Basin (Saskatchewan, Canada). Results indicate that resistivity, density, and porosity are correlated to each other, especially within basement units. A comparison of their distribution with the IR spectral mineralogy demonstrates a relationship for each altered and unaltered samples. The samples with low resistivity and density, and high porosity are characterized by the presence of a di-trioctahedral (Al–Mg) chlorite (sudoite) due to the hydrothermal alteration processes. The unaltered samples with higher resistivity and density, and low porosity contain a tri-octahedral (Fe–Mg) chlorite as a result of metamorphic processes. Eleven mineralogical classes can be established based on IR spectroscopy. A percentile-based approach has been proposed and tested to define physical property ranges for each of the classes to predict resistivity and density values downhole.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Takashi Tonegawa ◽  
Toshinori Kimura ◽  
Kazuya Shiraishi ◽  
Suguru Yabe ◽  
Yoshio Fukao ◽  
...  

AbstractLateral spatial variations of weak portions at the plate boundary in subduction zones have been estimated primarily by the distribution of slow earthquakes mainly occurring around seismogenic zones. However, the detailed depth profile of weak faults remains elusive. Here, we deployed six ocean bottom seismometers in the Nankai subduction zone, Japan, to observe reflections originated from drilling vessel Chikyu ship noise (hydroacoustic P wave) that was persistently radiated from a fixed position at the sea surface, and retrieved P-to-s (Ps) reflections from multiple dipping faults near the plate boundary. The Ps amplitudes were stacked and compared according to the degrees of tidal stresses, and high amplitudes were observed at high tide (compression). A migration technique shows that the locations where velocity contrasts fluctuate were estimated at both the megasplay fault and another fault between the megasplay fault and the top of the oceanic crust. This indicates that the physical properties of these faults are altered by tidal stress. The physical-property changes are attributed to fluid connections and isolations within the faults due to tidal stress fluctuations, inducing the variation of seismic anisotropy. Such a variation was confirmed by a three-dimensional numerical simulation for wave propagation with anisotropic medium. Our observation suggests that multiple weak faults are present around the plate boundary, and the obtained changes of fault physical properties may have implications for in-depth understanding of tidal triggering of earthquakes.


2019 ◽  
Vol 1 (9(39)) ◽  
pp. 21-28
Author(s):  
Мухтарова Х. З. ◽  
Насибова Г. Д.

In the article was showed complex results of petro physical testing sample of rocks from taken digging prospecting-development wells which are widen productive unit sediments of the northern part of the Baku arxipelago. An average values of granulometric composition of rocks of productive unit the above areas by the section have been recount. The matter dependence of permeability from porosity and porosity from depth was solved. The research showed that the same named and the same age rocks physical property change at the result of geological- physical process and getting different prices. The reservoir properties of rocks of productive unit have been learned. The physical properties of rocks of productive unit have been shown in the table. The reservoir properties of different type of rocks which take part in the geological structure of oil and gas bearing areas and their spreading conformity to natural laws are shown in the table.Dependence between physical parameters for the individual kinds of rocks, dependence between physical properties and material structures are established.


Geophysics ◽  
1990 ◽  
Vol 55 (11) ◽  
pp. 1435-1440 ◽  
Author(s):  
D. H. Easley ◽  
L. E. Borgman ◽  
P. N. Shive

Geostatistical simulation is used to create a synthetic three‐dimensional geologic environment such that randomly generated values of a physical property have a required covariance and mean. We create a spatially stationary, multivariate Gaussian simulation with a Gaussian covariance. This type of simulation permits modeling of natural variations which may be an important source of noise in geologic investigations, whereas interpolation techniques such as kriging tend to smooth out those variations. Computationally efficient frequency‐domain methods allow the rapid creation of multiple scenarios, each having the required statistical distribution. For the particular problem considered, a given porosity distribution is simulated and then functionally related to physical properties needed for input into geophysical models. Additionally, megascopic cavities having random size, shape, and orientation similar to those observed in karst settings are emplaced in the physical model. Geostatistical simulation plays a particularly important role in exploring the degree to which natural variations in physical parameters lower the resolution of target anomalies that have similar signatures. In the accompanying paper, we discuss the geophysical methods tested and the results of the tests.


2020 ◽  
Vol 5 (2) ◽  
pp. 364-375
Author(s):  
Amraini Amelia ◽  
◽  
Nining Sugihartini ◽  
Hari Susanti ◽  

This review aims to determine the types of bases that can be used every day, which are effective and efficient as anti-inflammatory drugs. The research method used was to review the development of clove essential oil formulations that have been carried out using various concentrations of various types of bases including M / A type cream, A / M type cream, water soluble base, lotion, emulgel, hydrocarbons, hydrogels and absorbents. The recommended formulation is type M / A cream with a concentration of 5% clove flower essential oil. The types of bases studied were M / A cream, type A / M cream, water soluble base, lotion, emulgel, hydrocarbons, hydrogels and absorption properties which had good physical properties and did not irritate the skin of the test animals. This review refers to several national and international journals released in the last ten years, from 2010 to 2020.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 711
Author(s):  
Zdzisław Kaliniewicz ◽  
Dariusz J. Choszcz

Viburnum is a genus of colorful and ornamental plants popular in landscape design on account of their high esthetic appeal. The physical properties of viburnum seeds have not been investigated in the literature to date. Therefore, the aim of this study was to characterize the seeds of selected Viburnum species and to search for potential relationships between their physical attributes for the needs of seed sorting operations. The basic physical parameters of the seeds of six Viburnum species were measured, and the relationships between these attributes were determined in correlation and regression analyses. The average values of the evaluated parameters were determined in the following range: terminal velocity—from 5.6 to 7.9 m s−1, thickness—from 1.39 to 1.87 mm, width—from 3.59 to 6.33 mm, length—from 5.58 to 7.44 mm, angle of external friction—from 36.7 to 43.8°, mass—from 16.7 to 35.0 mg. The seeds of V. dasyanthum, V. lentago and V. sargentii should be sorted in air separators, and the seeds of V. lantana and V. opulus should be processed with the use of mesh screens with round apertures to obtain uniform size fractions. The seeds of V. rhytodophyllum cannot be effectively sorted into batches with uniform seed mass, but they can be separated into groups with similar dimensions.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 724-732
Author(s):  
Changchun Ji ◽  
Yudong Wang

AbstractTo investigate the distribution characteristics of the three-dimensional flow field under the slot die, an online measurement of the airflow velocity was performed using a hot wire anemometer. The experimental results show that the air-slot end faces have a great influence on the airflow distribution in its vicinity. Compared with the air velocity in the center area, the velocity below the slot end face is much lower. The distribution characteristics of the three-dimensional flow field under the slot die would cause the fibers at different positions to bear inconsistent air force. The air velocity of the spinning centerline is higher than that around it, which is more conducive to fiber diameter attenuation. The violent fluctuation of the instantaneous velocity of the airflow could easily cause the meltblowing fiber to whip in the area close to the die.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1077
Author(s):  
Muhammad Tamoor ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Aamir Farooq ◽  
Rewayat Khan ◽  
...  

In this study, a numerical approach was adopted in order to explore the analysis of magneto fluid in the presence of thermal radiation combined with mixed convective and slip conditions. Using the similarity transformation, the axisymmetric three-dimensional boundary layer equations were reduced to a self-similar form. The shooting technique, combined with the Range–Kutta–Fehlberg method, was used to solve the resulting coupled nonlinear momentum and heat transfer equations numerically. When physically interpreting the data, some important observations were made. The novelty of the present study lies in finding help to control the rate of heat transfer and fluid velocity in any industrial manufacturing processes (such as the cooling of metallic plates). The numerical results revealed that the Nusselt number decrease for larger Prandtl number, curvature, and convective parameters. At the same time, the skin friction coefficient was enhanced with an increase in both slip velocity and convective parameter. The effect of emerging physical parameters on velocity and temperature profiles for a nonlinear stretching cylinder has been thoroughly studied and analyzed using plotted graphs and tables.


2014 ◽  
Vol 1008-1009 ◽  
pp. 850-860 ◽  
Author(s):  
Zhou Wei Zhang ◽  
Jia Xing Xue ◽  
Ya Hong Wang

A calculation method for counter-current type coil-wound heat exchanger is presented for heat exchange process. The numerical simulation method is applied to determine the basic physical parameters of wound bundles. By controlling the inlet fluid velocity varying in coil-wound heat exchanger to program and calculate the iterative process. The calculation data is analyzed by comparison of numerical result and the unit three dimensional pipe bundle model was built. Studies show that the introduction of numerical simulation can simplify the pipe winding process and accelerate the calculation and design of overall configuration in coil-wound heat exchanger. This method can be applied to the physical modeling and heat transfer calculation of pipe bundles in coil wound heat exchanger, program to calculate the complex heat transfer changing with velocity and other parameters, and optimize the overall design and calculation of spiral bundles.


1978 ◽  
Vol 57 (11-12) ◽  
pp. 983-988 ◽  
Author(s):  
J.W. Osborne ◽  
E.N. Gale ◽  
C.L. Chew ◽  
B.F. Rhodes ◽  
R.W. Phillips

An assessment of the marginal failure rate of 1,041 restorations of twelve alloys was made at one year. In addition, physical property tests were conducted. A correlation was found between the clinical performance and creep (.79), flow (.62) and 24-hour compressive strength (.60).


Sign in / Sign up

Export Citation Format

Share Document