scholarly journals RECIPE FOR DISASTER? THE DEPLOYMENT OF PATENTS OVER ENVIRONMENTALLY SOUND TECHNOLOGIES

1970 ◽  
Vol 22 (1) ◽  
Author(s):  
Ida Madieha Abdul Ghani Azmi ◽  
Suzi Fadhilah Ismail ◽  
Jeong Chun-Phuoc

The development, deployment and dissemination of low-carbon and other environmentally sound technologies (ESTs) is critical in our response to climate change. Yet, many of these critical technologies are patented and belong to private entities. Malaysia through the National Renewable Energy Policy and National Green Technology Policy, aims to leverage on green technology as a double edge sword; as a tool to spur economic activities whilst at the same time ensuring sustainable development and conservation of the environment for future generations. In order to enhance the uptake of ESTs, Malaysia has identified renewable energy as an impetus. This paper explores the discourse between the patents and climate change at the international level. As the diffusion of ESTs requires modification and adaptation, the issue of how much this can take place without the consent of the patent owner is discussed. The scope of scientific research exemption in Malaysia is examined with a view of determining whether it can support research activities with commercial activities and the act of inventing around a patent. It is proposed that for effective transfer of ESTs to take place, the scientific research provision be expanded to cover all forms of research necessary for the diffusion of technology, regardless of its commercial and transformative ends

2020 ◽  
Vol 1 ◽  
Author(s):  
Rebecca R. Hernandez ◽  
Sarah M. Jordaan ◽  
Ben Kaldunski ◽  
Naresh Kumar

Energy development improves quality of life for humans, but also incurs environmental consequences. A global energy transition from fossil fuels to renewable energy may mitigate climate change but may also undermine the capacity to achieve some or all 17 Sustainable Development Goals (SDGs). In this study, we use an innovation systems approach to construct a comprehensive roadmap for solar and wind energy to anticipate and improve impacts of a transition to a low carbon future in a manner ensuring climate goals and SDGs are mutually reinforcing. Our multidisciplinary approach began with an assessment of public investments in renewable energy followed by a 2-day research prioritization workshop. Fifty-eight expert workshop participants identified six research themes that proactively address the environmental sustainability of renewable energy. Next, we identified linkages between the six research themes and all 17 SDGs. Finally, we conducted a scientiometric analysis to analyze the research maturity of these themes. The results of these efforts elucidated the limits of existing knowledge of renewable energy-SDG interactions, informing the development of a research, development, demonstration, and deployment (RD3) roadmap to a renewable energy future aligned with both climate goals and SDGs. The RD3 roadmap has been designed to systematically develop solutions for diverse actors and organizations. Overall, our findings confer a broad vision for a sustainable transition to renewables to minimize unintended environmental consequences while supporting interoperability among actors particularly poised to influence its magnitude and direction.


Daedalus ◽  
2012 ◽  
Vol 141 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Mohamed T. El-Ashry

The world is entering a new energy era marked by concerns over energy security, climate change, and access by the poor to modern energy services. Yet the current energy path is not compatible with sustainable development objectives. Global demand for energy will continue to grow; so will CO2 emissions. Achieving a low-carbon energy world will require an unprecedented technological transformation in the way energy is produced and used. That transformation has begun, as renewables capacity continues to grow, prices continue to fall, and shares of global energy from renewables continue to increase. Government policies are the main driver behind renewable energy's meteoric growth. Still, the world is tapping only a small amount of the vast supply of renewable energy resources. There is broad consensus that the role of these resources should be expanded significantly in order to meaningfully address energy security, energy access, and climate change.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Isak Karabegović

It is well-known that, in the past decades, the burning of fossil fuels was identified as the major cause of climate change. Climate change mitigation is becoming a central concern of global society. Limiting global warming to below 2 °C above the temperature of the pre-industrial period is the key to preserving global ecosystems and providing a secure basis for human activities, as well as reducing excessive environmental change. The ambitions increased at an accelerated pace with a dramatic expansion of net zero-emission targets. Increasing pressure from citizens and society has forced countries to intensify their climate plans, while the private sector has bought a record amount of renewable energy. An energy system based on fossil fuels must be replaced by renewable energy with low carbon emissions with improved energy efficiency. That applies to all consumers of fossil energy: cities, villages, building sectors, industry, transport, agriculture, and forestry. The paper explores and presents the strategy of energy development of renewable energy sources in the world. The application of new technologies that have led to developing renewable energy sources is presented in detail: wind energy, solar energy, small hydropower plants, biomass, and their increase in the total share of energy production, i.e., reduced fossil fuel use in energy production. Investments in new technologies used in renewable energy sources have led to increases in employment worldwide. Analysis of the trend of increased energy production from RES (Renewable Energy Sources) with investment plans, the employment rate for each energy source, and the development of renewable energy sources in the coming period are provided.


Author(s):  
Andrew Hugh MacDougall ◽  
Joeri Rogelj ◽  
Patrick Withey

Abstract Global agriculture is the second largest contributor to anthropogenic climate change after the burning of fossil fuels. However the potential to mitigate the agricultural climate change contribution is limited and needs to account for the imperative to supply food for the global population. Advances in microbial biomass cultivation technology have recently opened a pathway to growing substantial amounts of food for humans or livestock on a small fraction of the land presently used for agriculture. Here we investigate the potential climate change impacts of the end of agriculture as the primary human food production system. We find that replacing agricultural primary production with electrically powered microbial primary production before a low-carbon energy transition has been completed could redirect renewable energy away from replacing fossil fuels, potentially leading to higher total CO2 emissions. If deployed after a transition to renewable energy, the technology could alleviate agriculturally driven climate change. These diverging pathways originate from the reversibility of agricultural driven global warming and the irreversibility of fossil fuel CO2 driven warming. The range of reduced warming from the replacement of agriculture ranges from -0.22 [-0.29 to -0.04] ºC for Shared Socioeconomic Pathway (SSP)1-1.9 to -0.85 [-0.99 to -0.39]ºC for SSP4-6.0. For limited temperature target overshoot scenarios, replacement of agriculture could eliminate or reduce the need for active atmospheric CO2 removal to achieve the necessary peak and decline in global warming.


2013 ◽  
Vol 15 (02) ◽  
pp. 1340003 ◽  
Author(s):  
GESA GEIßLER

Germany and the United States are amongst the leading countries regarding installed renewable energy capacity and are steadily adding new facilities. As balancing the strive for a low carbon energy supply with other environmental interests, such as biodiversity conservation, becomes more prevalent with increasing numbers of wind, solar, biomass, geothermal, and hydro-power facilities, the call for a strategic-level consideration of environmental impacts (SEA) becomes louder. The paper compares the practice of SEAs for renewable energy plans, programmes, and policies in terms of discussion of alternatives, consideration of cumulative effects, and public involvement. A case study analysis compares SEAs from Germany and the United States and evaluates their performance.Results indicate large differences between both countries, with Germany performing less well on average. Therefore, a strong need for improvement becomes obvious. A general conclusion is that both countries need to become more open to strategic assessment of environmental impacts from renewable energy policies, strategies, and legislation (policy SEA), in order to allow for meaningful assessment of alternatives and achieve an environmentally sound low carbon future.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6452
Author(s):  
Dalia Streimikiene ◽  
Tomas Baležentis ◽  
Artiom Volkov ◽  
Mangirdas Morkūnas ◽  
Agnė Žičkienė ◽  
...  

The paper deals with the exposition of the main barriers and drivers of renewable energy usage in rural communities. Climate change mitigation is causing governments, policymakers, and international organizations worldwide to embark on policies, leading to increased use of renewable energy sources and improvement of energy efficiency. Climate change mitigation actions, including the Green Deal strategy in the EU, require satisfying the expanding energy demand and complying with the environmental restrictions. At the same time, the prevailing market structure and infrastructure relevant to the energy systems are undergoing a crucial transformation. Specifically, there has been a shift from centralized to more decentralized and interactive energy systems that are accompanied by a low-carbon energy transition. Smart Grid technology and other innovations in the area of renewable energy microgeneration technologies have enabled changes in terms of the roles of energy users: they can act as prosumers that are producing and consuming energy at the same time. Renewable energy generation that is allowing for deeper involvement of the citizens may render higher social acceptance, which, in turn, fuels the low-carbon energy transition. The collective energy prosumption in the form of energy cooperatives has become a widespread form of renewable energy initiatives in rural communities. Even though renewable energy consumption provides a lot of benefits and opportunities for rural communities, the fast penetration of renewables and energy prosumption encounter several important barriers in the rural areas. This paper analyses the main barriers and drivers of renewable energy initiatives in rural areas and provides policy implications for the low-carbon energy transition in rural areas.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2875 ◽  
Author(s):  
Ignacio Mauleón

This research implements a methodology to the joint assessment of the photovoltaic and onshore wind investment roadmaps put forward by the main institutions in the field, International Renewable Energy Association (Irena) and the International Energy Agency, to achieve a low carbon emissions economy with near zero net greenhouse gases emissions. The two energies taken together account for over 80% of the renewable energy deployments envisaged by both roadmaps. The assessment is conducted according to economic criteria (the levelized cost of energy, capital requirements and financial risks), and environmental (carbon avoided, its value, and its cost). Given the recent Intergovernmental Panel on Climate Change (IPCC) report on the urgency to tackle climate change, accelerated deployments of the roadmaps are assessed as well. Overall, it is found that the roadmaps are financially sound, even under an accelerated scenario. Possible limits to the deployment of renewable energies roadmaps derived from the availability of raw materials and other constraints are also discussed, showing likely constraints for lithium batteries but not for photovoltaic and wind energies.


2021 ◽  
Vol 250 ◽  
pp. 03001
Author(s):  
Natalya Danilina ◽  
Irina Reznikova

Renewable energy technologies (RET) that emerged as a result of the shift towards the renewable energy sources (RES) which aims at setting the path towards decentralized low-carbon energy systems intended for tackling global warming are becoming key elements of the smart grids of the future. Our paper applies the economic, social and technological model of the renewable energy platforms to the energy markets of the 21st century. The paper analyses the growing importance of the individual players (prosumers) on the energy market, especially when it comes to the renewable energy generation and trading. It shows that modern advanced information and communication technologies enabled the energy prosumers to trade their energy and information in two-way flows. All of these might be important for the transition towards sustainable economy and green technology.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6854
Author(s):  
Serenella Caravella ◽  
Valeria Costantini ◽  
Francesco Crespi

The rapid decarbonization of the global economy represents the main challenge for the next decades to combat climate change. The European Union (EU) is leading the negotiation process under the Paris Agreement and recently approved an ambitious unilateral mitigation strategy known as the European Green Deal (EGD). In this paper, we present a novel approach based on the analysis of patent data related to climate change and mitigation technologies (CCMTs) with the aim of describing the evolutionary pattern of the EU in green technology. Based on our analysis, two of our main results deserve attention. First, at the global level, the pace of generation of new green technologies as measured by patent data is slowing down in recent years. This trend, if not inverted, casts some doubts on the economic sustainability of the ambitious environmental targets set by the EC. Second, the current EU technological positioning with respect to green areas appears to be problematic in terms of technological sovereignty, with serious risks of potential technological dependences from other countries. Given the radical technological shift required for the implementation of a full decarbonization pattern, the EU must realize a mission-oriented technology policy with additional and directed investments to ensure technological independence, together with a low-carbon and energy secure economy.


Sign in / Sign up

Export Citation Format

Share Document