scholarly journals BIOINSPIRED MULTIFUNCTIONAL NANOSTRUCTURES FOR MICRO-OPTICAL IMPLANTS

Author(s):  
V. Narasimhan ◽  
R.H. Siddique ◽  
J.O. Lee ◽  
S. Kumar ◽  
B. Ndjamen ◽  
...  
MRS Advances ◽  
2016 ◽  
Vol 1 (34) ◽  
pp. 2401-2407 ◽  
Author(s):  
Umanga De Silva ◽  
W. P. R. Liyanage ◽  
Manashi Nath

AbstractThe search for high-efficiency and environmentally benign water splitting catalysts has been on the rise since this process is a source of renewable, clean energy. However the process is inherently slow, especially for the production of O2 from H2O (water oxidation) due to the high electron count and energy intensive bond formation of the reaction. Hence the search for novel catalysts for oxygen evolution reactions (OER) has led researchers to focus on various families of compounds including oxides and recently selenides. Multifunctional nanostructures containing the semiconductor electrocatalyst grafted onto an optically active metallic component might boost the catalytic activity even further due to efficient charge injection. Magnetically active catalysts will also be lucrative since that might induce better adhesion of the oxygenated species at the catalytically active site. In this report we introduce multifunctional, magnetic Au3Pd–CoSe nanostructures as high-efficiency OER electrocatalysts. These multifunctional nanostructures were synthesized by a chemical vapor deposition (CVD) reaction with cobalt acetylacetonate and elemental selenium on Au-Pd sputter coated silica substrate at 800°C. The morphology of these multifunctional nanostructures were mostly bifunctional Janus-like nanoparticles as seen through scanning and transmission electron microscopy. They also showed soft ferromagnetic behavior. These bifunctional nanoparticles were coated on the anodes of a water oxidation cell and it was observed that these nanoparticles showed a higher OER activity with lower onset potential for O2 evolution as compared to the conventional oxide-based OER electrocatalysts.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dipti Rawat ◽  
P. B. Barman ◽  
Ragini Raj Singh

Abstract The selected and controlled preparation of core@shell nanostructures, which unite the multiple functions of ferromagnetic Ni-Zn ferrite core and CdS shell in a single material with tuneable fluorescence and magnetic properties, have been proposed by the seed mediated aqueous growth process. The shell particle thickness and core of nanostructures were precisely tuned. Current work exhibits the comparative study of core@shell multifunctional nanostructures where core being annealed at two different temperatures. The core@shell nanostructure formation was confirmed by complementary structural, elemental, optical, magnetic and IR measurements. Optical and magnetic characterizations were performed to study elaborative effects of different structural combinations of core@shell nanostructures to achieve best configuration with high-luminescence and magnetic outcomes. The interface of magnetic/nonmagnetic NiZnFe2O4/CdS nanostructures was inspected. Unexpectedly, in some of the core@shell nanostructures presence of substantial exchange-bias was observed in spite of the non-magnetic nature of CdS QDs which is clearly an “optically-active” and “magnetically-inactive” material. Presence of “exchange-bias” was confirmed by the change in “magnetic-anisotropy” as well as shift in susceptibility derivative. Finally, successful formulation of stable and efficient core@shell nanostructures achieved, which shows no exchange-bias and shift. Current findings suggest that these magneto-fluorescent nanostructures can be used in spintronics; and drug delivery-diagnosis-imaging applications in nanomedicine field.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Jobayer Hossain ◽  
Mengdi Sun ◽  
Gregory Doerk ◽  
Pieter G. Kik ◽  
Kristopher O. Davis

Abstract This work reports the fabrication and characterization of multifunctional, nanostructured passivation layers formed using a self-assembly process that provide both surface passivation and improved light trapping in crystalline silicon photovoltaic (PV) cells. Scalable block copolymer self-assembly and vapor phase infiltration processes are used to form arrays of aluminum oxide nanostructures (Al2O3) on crystalline silicon without substrate etching. The Al2O3 nanostructures are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and spectroscopic ellipsometry. Injection-level dependent photoconductance measurements are used to determine the effective carrier lifetime of the samples to confirm the nanostructures successfully passivate the Si surface. Finite element method simulations and reflectance measurement show that the nanostructures increase the internal rear reflectance of the PV cell by suppressing the parasitic optical losses in the metal contact. An optimized morphology of the structures is identified for their potential use in PV cells as multifunctional materials providing surface passivation, photon management, and carrier transport pathways.


2008 ◽  
Vol 130 (32) ◽  
pp. 10545-10555 ◽  
Author(s):  
Alessandra Quarta ◽  
Riccardo Di Corato ◽  
Liberato Manna ◽  
Simona Argentiere ◽  
Roberto Cingolani ◽  
...  

2019 ◽  
Vol 221 ◽  
pp. 250-257 ◽  
Author(s):  
Muhammad Tahir Zahoor ◽  
Mashkoor Ahmad ◽  
Khan Maaz ◽  
Shafqat Karim ◽  
Khalid Waheed ◽  
...  

2009 ◽  
Vol 131 (2) ◽  
pp. 406-407 ◽  
Author(s):  
Esad Vucic ◽  
Honorius M. H. F. Sanders ◽  
Francesca Arena ◽  
Enzo Terreno ◽  
Silvio Aime ◽  
...  

2004 ◽  
Vol 831 ◽  
Author(s):  
Gupta Shalini ◽  
Kang Hun ◽  
Strassburg Martin ◽  
Asghar Ali ◽  
Senawiratne Jayantha ◽  
...  

ABSTRACTThis paper reports the Metal Organic Chemical Vapor Deposition (MOCVD) growth of GaN nanostructures. The use of MOCVD allows the direct integration of these nanostructures into pre-existing device technology. The formation of GaN nanostructures grown on AlN epitaxial layers were studied as a function of growth temperature, growth rate, V-III ratio and the amount of deposited material. A wide range of temperatures from 800 °C to 1100 °C and V-III ratios from 30 to 3500 were applied to determine the optimal growth conditions for nucleation studies in a modified production reactor. Small GaN nanostructures with lateral dimensions below 50 nm and low aspect ratios were obtained using relatively low temperatures of 815 °C and extreme metal-rich growth conditions. Island densities up to 1010 cm−2 were achieved using silane as an anti-surfactant to increase the available nucleation sites. Manganese has been incorporated into these nanostructures to enhance the multifunctional ferromagnetic properties of GaMnN.


Sign in / Sign up

Export Citation Format

Share Document