scholarly journals Not Your Grandma's Goobers: Designing the Future of Peanut Breeding

2019 ◽  
Vol 46 (1A) ◽  
pp. 91-98 ◽  
Author(s):  
Kelly D. Chamberlin

ABSTRACT The peanut producer has realized a 130% increase in yield since 1969, with production averaging 4,563 kgha−1 nationwide for the US in 2017. Advances in agricultural engineering, agricultural practices, and chemicals for pests, diseases and weed management have all contributed to increased peanut production efficiency and profitability. Perhaps greatest contribution to sustainable peanut production has been made by area-targeted peanut breeding programs. Charged with hitting the moving target of a 'perfect peanut cultivar', peanut breeders have managed to deliver to their customers by focusing on developing cultivars with traits of high importance such as disease resistance, high oleic acid content, early maturity, and drought tolerance, while advancing essential traits such as yield and grade. Conventional peanut breeding has provided a continuous supply of improved cultivars over the last 50 years. However, this success may be difficult to exceed if only conventional technologies continue to be used. Fortunately, recent advances in molecular technologies have resulted in the sequencing of both the ancestral and cultivated peanut genomes, opening the door for the mapping of traits and molecular marker development. By extensively phenotyping populations designed for trait mapping, steps can now be taken over the next decade to develop trait-specific markers for use in rapidly mining vast germplasm collections, efficiently identifying useful breeding material, pyramiding traits into cultivars and drastically reducing time and resources required for cultivar development. Future generations of peanut breeders will undoubtedly be well-trained in the use of such markers and will finally have the tools necessary to break through the bottle-neck of the cultivated peanut narrow genetic base. The age of peanut breeding by design may be just around the corner.

EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Pratap Devkota

Successful weed control in peanuts involves use of good management practices in all phases of peanut production. This 11-page document lists herbicide products registered for use in Florida peanut production, their mode of actions group, application rate per acre and per season, and reentry interval. It also discusses the performance of these herbicides on several weeds under Florida conditions. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.


Crop Science ◽  
2001 ◽  
Vol 41 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Yolanda López ◽  
Olin D. Smith ◽  
Scott A. Senseman ◽  
William L. Rooney

1997 ◽  
Vol 11 (3) ◽  
pp. 573-579 ◽  
Author(s):  
Anthony D. White ◽  
Harold D. Coble

Researchers are currently developing predictive weed management models to aid producers in maintaining or improving economic profitability of peanut production while minimizing herbicide inputs and reducing environmental impact. HERB (Version 2.1.P), a computer decision model, has recently been developed for peanut and is now awaiting validation of weed control decisions before being released to the public. Field validation trials in 1994 and 1995 indicate that the current competitive index parameters in the HERB model are invalid, and statistically estimated competitive indices were generated. Estimating new parameters improvedR2values from 0.37 to 0.61. New competitive index parameters allow the HERB model to more accurately predict the level of yield loss at a given weed density.


Weed Science ◽  
1985 ◽  
Vol 33 (2) ◽  
pp. 233-237 ◽  
Author(s):  
Daniel L. Colvin ◽  
Glenn R. Wehtje ◽  
Mike Patterson ◽  
Robert H. Walker

Field experiments were conducted in 1982 and 1983 on a Dothan sandy loam (Plinthic Paleudult) at Headland, AL, to investigate minimum-tillage production of peanuts (Arachis hypogaeaL.). The experiments included two peanut varieties: a) ‘Pronto’ (an earlier maturing Spanish type), and b) ‘Florunner’ (a later maturing runner type). Two row-spacing patterns were used: a) conventional 91-cm rows, and b) a modified twin 18-cm row pattern. A constant seeding rate (140 kg/ha) was used regardless of row spacing. Six herbicide systems were evaluated within each combination of variety and row spacing. The Florunner variety outyielded the Pronto variety across both years and weed management systems. Modified twin 18-cm rows outyielded conventional 91-cm rows across years and peanut varieties. Two of the six weed management systems were successful: 1) paraquat (1,1’-dimethyl-4,4’-bipyridinium ion) + oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide) (preemergence), paraquat (ground cracking), naptalam (N-1-naphthylphthalamic acid) + dinoseb (2-sec-butyl-4,6-dinitrophenol) (postemergence); and 2) paraquat + pendimethalin [N-(1-ethylpropyl-3,4-dimethyl-2,6-dinitrobenzenamine] (preemergence), acetochlor [2-chloro-N(ethoxymethyl)-6’-ethyl-o-acetotoluidide] + dinoseb (ground cracking), and cyanazine {2-[[4-chloro-6-(ethylamino)-s-triazine-2-yl]amino]-2-methylpropionitrile} (early postdirected spray). Both systems provided the best overall control of Texas panicum (Panicum texanumBuckl. ♯ PANTE), Florida beggarweed [Desmodium tortuosum(Sw.) DC. ♯ DEDTO], and sicklepod (Cassia obtusifoliaL. ♯ CASOB) and were acceptable for use in minimum-tillage peanut production.


2011 ◽  
Vol 40 (No. 4) ◽  
pp. 140-147 ◽  
Author(s):  
E. Germán S

The annual average area sown with barley (Hordeum vulgare) in South America during 1999–2003 was 795 000 ha. In Argentina, Brazil, Chile and Uruguay, two-rowed spring cultivars are used mostly for malt production. Research has been developed in private malting companies and official institutions supported by the industry. In Argentina, tolerance to drought and heat stress during grain filling are important in drier areas. Yield and malt extract had been improved in cultivars released from 1940 to 1998. In Brazil, progress in grain yield, grain size, malting quality, early maturity, and resistance to net blotch, powdery mildew, and leaf rust has been achieved by EMBRAPA and malting companies. Higher tolerance to soil acidity and resistance to spot blotch are required. Since 1976, malting barley breeding in INIA-Chile has improved grain yield, grain size, beer production efficiency, and resistance to scald, net blotch, stripe rust, and leaf rust. Uruguay produces high quality malt exported mainly to Brazil. Malting companies have released locally bred and introduced cultivars since the early 1970’s. Initiated in 1988, INIA-Uruguay breeding program has improved yield, malting quality, and lodging and disease resistance. Fusarium head blight is a new challenge for research in Brazil and Uruguay. Information regarding malting barley production, the most important stresses in different areas of production, and breeding progress under South American conditions is provided.  


2013 ◽  
Vol 594-595 ◽  
pp. 356-361
Author(s):  
Rozaini Abdullah ◽  
Farizul Hafiz Kasim ◽  
Siti Nur Amalieya Syaza Mohd Zuki ◽  
Noor Hajarul Ashikin Shamsuddin

The price fluctuation and negative environmental effect of mineral oil-based lubricant are the main factors which instigate the research on high-oleic vegetable oil as its possible replacement. In this study, the factors involved in blending process of waste cooking oil (WCO) and Jatropha curcas oil (JCO) as biolubricant basestock were investigated using 2-level factorial design. The molar ratio of WCO to the JCO (WCO:JCO), stirring speed and blending times were the three factors studied. The WCO:JCO, stirring speed and the blending time were found to be significant to the increased of oleic acid content in the basestock. The highest percentage of oleic acid achieved was 53.31 % at molar ratio of WCO:JCO at 20:80, 350 rpm and time at 30 minutes. Thus this study exposed the potential of new blending oil which are comparable with other vegetable and mineral oils as base stock for bio-lubricant in term of fatty acid compositions.


2013 ◽  
Vol 27 (2) ◽  
pp. 417-421 ◽  
Author(s):  
W. Carroll Johnson ◽  
Mark A. Boudreau ◽  
Jerry W. Davis

Weed control in organic peanut is difficult and lack of residual weed control complicates weed management efforts. Weed management systems using corn gluten meal in combination with clove oil and sweep cultivation were evaluated in a series of irrigated field trials. Corn gluten meal applied in a 30 cm band over the row at PRE, sequentially at PRE+2 wk after emergence, and PRE+2wk+4wk did not adequately control annual grasses and smallflower morningglory. Similarly, a banded application of clove oil applied POST did not adequately control weeds. The only treatment that improved overall weed control was sweep cultivation. Peanut yields were not measured in 2006 due to heavy baseline weed densities and overall poor weed control. Peanut yields were measured in 2007 and were not affected by any weed control treatment due to poor efficacy. While sweep cultivation improved weed control, weeds were controlled only in the row middles and surviving weeds in-row reduced peanut yield. Even when used in combination with sweep cultivation, corn gluten meal and clove oil were ineffective and offer little potential in a weed management system for organic peanut production.


2018 ◽  
Vol 45 (1) ◽  
pp. 38-44 ◽  
Author(s):  
W. Carroll Johnson ◽  
Albert K. Culbreath ◽  
Xuelin Luo

ABSTRACT During previous organic peanut weed management trials, maintenance pesticides were not applied and it was observed that insect infestations and disease epidemics were not problematic. This was surprising considering that conventional peanut are routinely treated with insecticides and fungicides to control common pests. It was hypothesized that components of the organic peanut production system could be integrated into conventional peanut production to reduce inputs. Structured research trials were conducted from 2012 through 2014 to determine interactions among three levels of weed control, two levels of insect control, and three levels of fungal disease control in organic peanut production using a factorial arrangement of treatments. Weed control treatments were weed-free using handweeding, cultivation with a tine weeder repeated weekly for six weeks, and a non-cultivated (weedy) control. Insect control treatments were two early-season applications of spinosad (Organic Materials Review Institute approved) and a nontreated control. Fungal disease control treatments were applications of cupric oxide plus sulfur (Cu+S) at three-week intervals, the conventional fungicide azoxystrobin at three-week intervals, and a nontreated control. The peanut cultivar Georgia-04S was planted each year of the study. The crop rotation at the research sites was corn grown in alternating years between peanut experiments. There were no interactions among the main effects. Compared to the non-cultivated control, cultivation with a tine weeder consistently reduced weed densities, and yields were equivalent to handweeded peanut two years of three. Intensive cultivation with a tine weeder did not increase disease epidemics or reduce peanut yield, which is contradictory to long-standing peanut production recommendations. Spinosad applications did not affect any of the parameters measured, including incidence of thrips-vectored spotted wilt and peanut yield. Cupric oxide plus sulfur controlled peanut diseases equal to azoxystrobin two years out of three, but peanut yields did not consistently respond to improved disease control from the conventional fungicide. We speculate that ideal crop rotations to reduce disease inoculum and modern peanut cultivars with improved disease tolerance are also factors that allow the use of reduced pest control inputs.


2012 ◽  
Vol 144 (5) ◽  
pp. 645-657 ◽  
Author(s):  
Olivier Lalonde ◽  
Anne Légère ◽  
F. Craig Stevenson ◽  
Michèle Roy ◽  
Anne Vanasse

AbstractAgricultural practices affect the biotic and abiotic conditions that determine food and shelter for carabid beetles (Coleoptera: Carabidae). We hypothesised that carabid communities would respond differently to 18 years of contrasted cropping practices in cereal-based rotations. We measured the effects of tillage (MP: moldboard plough; CP: chisel plough; NT: no-till) and previous crop sequence (cereal monoculture versus cereal–forage/cereal–oilseed rotation) on carabid beetle activity density, diversity, and community structure in corn (Zea mays Linnaeus, Poaceae) at La Pocatière, Québec, Canada. Carabid beetles were sampled monthly from May to September 2006, using pitfall traps. Although 19 carabid species were observed, assemblages were dominated by Harpalus rufipes (De Geer), particularly in the second half of the season. Multivariate analyses indicated a strong affinity of carabid species for the NT treatment throughout the season. Crop sequence and tillage had no effect on diversity (Shannon's H′ ≤ 1.3) and evenness of carabid assemblage, but species richness and activity density were greater in NT than in tilled systems. Peak activity density of dominant species occurred at different times during the season, generally in accordance with preferred breeding season. Many species had greater activity density in NT than in tilled treatments. Because of their granivorous feeding habit, carabid populations such as that of H. rufipes could be an important asset to NT, given the limited weed management options available for this system.


Sign in / Sign up

Export Citation Format

Share Document