scholarly journals Breeding Malting Barley under Stress Conditions in South America

2011 ◽  
Vol 40 (No. 4) ◽  
pp. 140-147 ◽  
Author(s):  
E. Germán S

The annual average area sown with barley (Hordeum vulgare) in South America during 1999–2003 was 795 000 ha. In Argentina, Brazil, Chile and Uruguay, two-rowed spring cultivars are used mostly for malt production. Research has been developed in private malting companies and official institutions supported by the industry. In Argentina, tolerance to drought and heat stress during grain filling are important in drier areas. Yield and malt extract had been improved in cultivars released from 1940 to 1998. In Brazil, progress in grain yield, grain size, malting quality, early maturity, and resistance to net blotch, powdery mildew, and leaf rust has been achieved by EMBRAPA and malting companies. Higher tolerance to soil acidity and resistance to spot blotch are required. Since 1976, malting barley breeding in INIA-Chile has improved grain yield, grain size, beer production efficiency, and resistance to scald, net blotch, stripe rust, and leaf rust. Uruguay produces high quality malt exported mainly to Brazil. Malting companies have released locally bred and introduced cultivars since the early 1970’s. Initiated in 1988, INIA-Uruguay breeding program has improved yield, malting quality, and lodging and disease resistance. Fusarium head blight is a new challenge for research in Brazil and Uruguay. Information regarding malting barley production, the most important stresses in different areas of production, and breeding progress under South American conditions is provided.  

2003 ◽  
Vol 54 (12) ◽  
pp. 1125 ◽  
Author(s):  
A. R. Barr ◽  
A. Karakousis ◽  
R. C. M. Lance ◽  
S. J. Logue ◽  
S. Manning ◽  
...  

A doubled haploid population of 120 individuals was produced from the parents Chebec, an Australian 2-row barley of feed quality with resistance to the cereal cyst nematode, and Harrington, a 2-rowed, Canadian variety of premium malting quality. This paper describes 18 field and laboratory experiments conducted with the population and summarises the traits mapped and analysed. The genomic location of 25 traits and genes is described and marker–trait associations for 5 traits (malt extract, diastatic power, resistance to cereal cyst nematode, early flowering, resistance to pre-harvest sprouting) important to Australian efforts to improve malting barley varieties have been used in practical breeding programs. Detailed maps for these populations are shown in this paper, while a consensus map incorporating these maps and further experiments on the populations are described elsewhere in this issue.


1999 ◽  
Vol 50 (8) ◽  
pp. 1425 ◽  
Author(s):  
M. Q. Lu ◽  
L. O'Brien ◽  
I. M. Stuart

Genotype, environment, and genotype × environment interaction effects for malting quality attributes and grain yield were investigated using breeding lines from the F2, F3, and F4 generations and the parental varieties of 4 barley crosses. There were significant differences between the parental varieties for all attributes studied. Both malting quality and grain yield exhibited a wide range among progenies in all generations. While performance of the parental varieties and progeny for malting quality and grain yield were greatly influenced by environment, performance in one environment was predictive of that in other environments. Only for grain protein content was there evidence of crossover G × E interaction. Heritability was generally higher for F3 to F4 than for F2 to F3 for all malting quality attributes. F3 on F2 regression per cent heritability estimates for protein content, potential malt extract and grain weight were all highly significant with values generally medium in magnitude. Genetic gain was obtained from selection in both the F2 and F3 generations. Heritability and genetic gain varied from cross to cross for diastatic power. Progress from selection for the other quality attributes attests to the potential value of NIT (near infrared transmittance) spectroscopy for predicting potential malting quality. Heritability for F2 to F3 for grain yield was not significant in any cross, indicating selection for yield on the basis of individual F2 plant yield was ineffective. Heritability for grain yield from F3 to F4 was highly significant and medium in magnitude for 3 of the 4 crosses. The results of this study indicate that good genetic gain could be expected from early generation selection for potential malting quality using NIT spectroscopy and for grain yield using F3 progeny testing.


1997 ◽  
Vol 37 (2) ◽  
pp. 199 ◽  
Author(s):  
G. Fathi ◽  
G. K. McDonald ◽  
R. C. M. Lance

Summary. Genotypic differences in responses to nitrogen (N) fertiliser of 6 cultivars of barley (Clipper, Stirling, Weeah, Schooner, Chebec, Skiff) grown at 8 different rates of N were examined in 2 seasons. Measurements of vegetative growth, N content, grain yield, grain protein concentration (GPC) and yield components were taken to identify traits that may contribute to high yield responsiveness. The optimum rates of N for dry matter production at ear emergence (DMee) were greater than 80 kg N/ha for all cultivars and often growth increased up to 105 kg N/ha. Optimum rates of N for grain yield (Nopt) were lower and ranged, on average, from 50 kg N/ha for Clipper to 96 kg N/ha for Chebec. The initial response to N varied from 13–14 kg/kg N in Chebec, Weeah and Schooner, to 36 kg/kg N in Skiff. The Nopt for the semi-dwarf cultivar Skiff was 71 kg N/ha and it tended to show the greatest yield response to N. It produced 19 kernels/g DMee, compared with 15–17 kernels/g DMee in the other cultivars. Unlike most other cultivars, Skiff’s yield was consistently and positively correlated with ears/m2; Stirling was the only other cultivar to show a similar relationship. However, the average kernel weight of Skiff was up to 5 mg lower than that of Clipper, Weeah and Schooner, and varied more than these cultivars between sites, suggesting that consistent grain size may be a problem in this cultivar. By comparison, Clipper and Schooner had lower Nopt (51 kg/ha) and a less variable kernel weight. There were no signs of differences in GPC of the 6 cultivars used here at 3 N-responsive sites. Adding N increased GPC up to the highest rate of N and the responses were generally linear, but GPC at Nopt exceeded the upper limit for malting quality of 11.8% in all cultivars. Average N rates of between 38 kg N/ha (Schooner) and 58 kg N/ha (Skiff) were sufficient to raise GPC above 11.8%. The experiments showed that the N rates for optimum yields varied considerably among cultivars, but applyi1ng rates to achieve maximum yields may cause GPC to exceed the maximum value for malting barley. The use of semi-dwarf cultivars, such as Skiff, which are very responsive to N, can provide some leeway in the choice of N, but there may be a trade-off in quality associated with reduced grain size.


2000 ◽  
Vol 51 (2) ◽  
pp. 247 ◽  
Author(s):  
M. Q. Lu ◽  
L. O'Brien ◽  
I. M. Stuart

Relationships between malting quality attributes and grain yield in segregating populations can profoundly influence the intensity and sequence of trait selection. Consequently, the interrelationships between malting quality parameters predicted by near infrared transmittance (NIT) spectroscopy, grain weight, and grain yield in unselected populations of F2, F3, and F4 breeding lines from 4 barley crosses were examined. The simple and partial correlations between malt extract, protein content, and diastatic power were similar to those reported in previous studies except for a positive correlation between malt extract and diastatic power in the F2 and F3 generations. This positive relationship should enhance selection for improved malting quality in breeding programs. There were no relationships between grain yield and malting quality attributes, which would have an adverse impact on the intensity and sequence of trait selection. The effect of F2 and F3 selection for malting quality on F3 and F4 yield distributions was estimated by comparing the F3 and F4 yield distributions of the entire unselected population with those for the selected populations. Individual selection and sequential independent selection in the F2 and F3 generation for malting quality parameters predicted by NIT spectroscopy and grain weight in 4 crosses generally did not alter the nature of the subsequent yield distributions, yet 78–90% of lines could be discarded and there still existed adequate genetic gain for grain yield in the retained population of potentially good malting quality lines. These results indicate that barley breeders could use NIT spectroscopy to efficiently select in the early generations for malting quality prior to the conduct of yield testing and obtain good genetic gain for both malting quality and grain yield.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1177
Author(s):  
Yuncai Hu ◽  
Gero Barmeier ◽  
Urs Schmidhalter

Cultivation of malting barley is particularly challenging as the requirements of growers, for high yield, and that of the brewing industry, seeking a specific quality criteria, must be met simultaneously. Furthermore, significant genotypic and environmental variations in grain yield and quality properties may occur. To investigate the relationships between grain yield and quality parameters of spring malting barley, a 2-year experiment was carried out in order to characterise the genotypic and year effects on grain yield, quality properties, and yield components of 23 high-yielding varieties of spring malting barley under optimal nitrogen (N) fertilisation. Compared to the grain quality properties of the grain protein content and the grain retention fraction of grain size >2.5 mm, less genotypic and environmental variation in grain yield was observed. Grain yield was closely related to spikes per m2, suggesting the importance of tiller formation and establishment as a decisive factor influencing malting barley yields. A major interactive effect of genotypes and year on grain size was observed. Regarding weather effects, the global radiation intensity during the post-anthesis phase was the major factor affecting the final grain size in this study. Grain protein content was primarily dependent on the year effect, suggesting that optimal N fertilisation levels must vary between years to ensure the correct protein content required for the needs of the brewing industry is met. Therefore, we recommend further development strategies addressing N fertilisation and soil N mineralisation to optimise the production of spring malting barley.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11287
Author(s):  
Junmei Wang ◽  
Xiaojian Wu ◽  
Wenhao Yue ◽  
Chenchen Zhao ◽  
Jianming Yang ◽  
...  

Background Barley grain size is one of the key factors determining storage capacity during grain filling. Large, well-filled grains also have a high malt extract potential. Grain size is a complex quantitative trait and can be easily affected by environmental factors thus the identification of genes controlling the trait and the use of molecular markers linked to the genes in breeding program is the most effective way of improving grain size. Methods Grain sizes of 188 doubled-haploid (DH) lines derived from the cross of a Japanese malting barley variety (Naso Nijo) and a Chinese feed barley variety (TX9425) were obtained from three different sites in two consecutive years. The average data were used for identifying QTL for grain size. Results A total of four significant QTL were identified for grain length (GL) and three for grain width (GW). The two major GL QTL are located at similar positions to the QTL for malt extract on 2H and uzu gene on 3H, respectively. However, the GL QTL on 2H is more likely a different one from the malt extract QTL as most of the candidate genes are located outside the fine mapped QTL region for malt extract. The GL QTL on 3H is closely linked with uzu gene but not due to a pleiotropic effect of uzu. The three QTL for grain width on 1H, 2H and 5H, respectively, were located at same position to those for GL.


1987 ◽  
Vol 67 (3) ◽  
pp. 823-826 ◽  
Author(s):  
D. R. METCALFE

Ellice is a two-rowed malting barley (Hordeum vulgare L.) developed at the Agriculture Canada Research Station, Winnipeg, Manitoba from a cross involving CI5791, Parkland, Betzes, Piroline, Akka, Centennial, Klages, Cambrinus and Tern. This cultivar (registration no. 2715) is earlier and has better straw strength and malting quality than Klages. It has demonstrated yield potential equal to Klages and Harrington throughout the prairie provinces. It is resistant to stem rust and powdery mildew and tolerant to net blotch and the surface borne smuts. It is best adapted to the Black Soil Zone of Manitoba and eastern Saskatchewan.Key words: Malting barley, barley, Hordeum vulgare


1945 ◽  
Vol 23c (6) ◽  
pp. 212-218 ◽  
Author(s):  
Margaret Newton ◽  
B. Peturson ◽  
W. O. S. Meredith

An experiment was carried out to test the effect of leaf rust of barley (Puccinia anomala Rostr.) on the yield, grade, and malting quality of the six barley varieties, O.A.C. 21, Mensury, Chevron, Peatland, Regal, and Plush. Leaf rust reduced the grade of O.A.C. 21 and Mensury by one commercial grade, and caused statistically significant reductions in the yield, bushel weight, and kernel weight of all the varieties tested except Mensury. It adversely affected the value of all the varieties for malting purposes by reducing the percentage of heavy-grade kernels. The nitrogen content and the wort nitrogen content were reduced by leaf rust, but the malt extract and diastatic powers were not greatly affected. Differentia¡ responses of the varieties to rust infection were observed in yield, kernel weight, bushel weight, and malt properties.


2019 ◽  
Vol 11 (2) ◽  
pp. 161-166
Author(s):  
İ. Öztürk

Abstract. Barley is an important crop in Trakia region, Turkey and due to various environmental factors it can suffer some biotic stress and yield loss in the region. This research was carried out in two locations (Edirne and Tekirdağ) of Trakia region during 2013-2014 growing year. The experiment was set up with 25 advanced genotypes in completely randomized blocks with four replications at two locations. Grain yield, plant height, days to heading, leaf rust, net blotch, powdery mildew and relationship among these characters were investigated. According to the results, there was significant difference among genotypes for grain yield, biotic stress factors and other characters. The mean grain yield of the genotypes was 6866 kg ha-1. TEA1619-11 had the highest grain yield with 7667 kg ha-1. TEA2311-19 (7593 kg ha-1) and Harman (7593 kg ha-1) were the other highest yielding genotypes. Due to various environmental conditions, there was significant difference between locations. Mean yield in Edirne location was 7841 kg ha-1 and in Tekirdağ location it was 5891 kg ha-1. TEA1619-8 and TEA1619-9 sister lines had the shortest plant height and early genotypes had higher grain yield. Net blotch (Pyrenophora teres f. teres) is the mainly prevalent disease in Trakya region. Leaf rust and powdery mildew had negative effect and decreased grain yield. TEA1619-12, TEA1619-17, TEA2311-19 and TEA1980-25 genotypes were resistant at both locations. TEA1980-25 was an outstanding line to net blotch, leaf rust and powdery mildew. It was determined that increase of net blotch had negative effect and decreased the grain yield in the genotypes.


2018 ◽  
Vol 156 (4) ◽  
pp. 515-527 ◽  
Author(s):  
E. M. Potterton ◽  
T. McCabe

AbstractThe significant expansion of whiskey distillation in Ireland has increased requirements on the Irish malting barley industry to supply spring barley with low grain nitrogen concentration (GNC). Published literature suggests that genetics, soil type and environmental conditions are the predominant drivers controlling production of malting barley with low GNC values. However, it is acknowledged that agronomic practices such as sowing date and nitrogen (N) application are also important factors in determining the grain yield (GY) and grain quality (GQ) of malting barley. The effects of four N fertilizer rates (90, 110, 130 and 150 kg N/ha) and two sowing dates (March and April) on GY and GQ of a two-row spring barley variety (Hordeum vulgare L. cvar Overture) was evaluated at two different sites over a 3-year period (2014–2016). Earlier sowing dates resulted in significantly higher mean GY (7.98 t/ha) compared with later sowing dates (7 t/ha). GY and GNC also increased consistently with greater increments of fertilizer N. Earlier sowing dates also significantly improved several distilling malt quality parameters, such as soluble extract (SE), fermentable extract, predicted spirit yield and fermentability. Later sowing dates increased diastatic power and soluble N. The results of the current study suggest that the likelihood of producing spring malting barley with low GNC values and better malting quality is enhanced through earlier sowing dates on suitable soil types. Earlier sowing dates also facilitated the use of higher fertilizer N rates, enabling high GY potential without crossing the GNC threshold for the distilling market.


Sign in / Sign up

Export Citation Format

Share Document