scholarly journals ESTIMATION OF THE SLIP LENGTH IN THE FLOW OF LIQUID IN MICRO-CHANNELS

2018 ◽  
Vol 40 (2) ◽  
pp. 12-19
Author(s):  
Y.Y. Kovetska

Research review of phenomenon for slip flow in micro and nanocannels is presented in the paper. The analysis of theoretical and experimental data characterizing the slip length is carried out. In slip flow in microchannels the slip length is affected by the contact angle of the liquid with the surface, shear stress, pressure, dissipative heating, the amount and nature of the dissolved gas in the liquid, electrical characteristics, surface roughness. Studies of flow in microchannels with hydrophobic walls, which are based on molecular dynamics, showed that the slip length has order of 20 nm. This is much less than the values observed in the experiment. The introduction of an effective (apparent) slip length suggests the existence of a thin layer of gas bubbles near the hydrophobic surface or liquid layer with low value of viscosity and density. Since the idealized model for the total coverage of a hydrophobic surface by gas bubbles gives, as a rule, overestimated values of the slip length in comparison with experimental ones, some researchers consider the inhomogeneous coating of the wall by gas bubbles. In this case, the effect of a layer with a lower viscosity on the slip length turns out to be weaker.

1998 ◽  
Vol 37 (4-5) ◽  
pp. 211-214 ◽  
Author(s):  
Linda K. Sawyer ◽  
Slawomir W. Hermanowicz

Growth and detachment rates of an environmental isolate of Aeromonas hydrophila attached to a surface were determined under varying nutrient supply conditions in a complex medium. Growth and detachment of cells were observed in real time using phase contrast microscopy in glass parallel plate flow chambers. Surface shear stress was controlled in all experiments at 3 N m−2. Images were taken every 15 min. Digital image analysis was used to determine specific growth and detachment rates. An observable parameter proportional to the nutrient depletion at the surface due to transfer limitations was used to indicate nutrient limitations. Specific detachment rates increased as the depletion parameter increased, indicating that nutrient limitations cause this bacterium to detach at greater rates.


Author(s):  
Yun Jiao ◽  
Chengpeng Wang

An experimental study is conducted on the qualitative visualization of the flow field in separation and reattachment flows induced by an incident shock interaction by several techniques including shear-sensitive liquid crystal coating (SSLCC), oil flow, schlieren, and numerical simulation. The incident shock wave is generated by a wedge in a Mach 2.7 duct flow, where the strength of the interaction is varied from weak to moderate by changing the angle of attack α of the wedge from 8° and 10° to 12°. The stagnation pressure upstream was set to approximately 607.9 kPa. The SSLCC technique was used to visualize the surface flow characteristics and analyze the surface shear stress fields induced by the initial incident shock wave over the bottom wall and sidewall experimentally which resolution is 3500 × 200 pixels, and the numerical simulation was also performed as the supplement for a clearer understanding to the flow field. As a result, surface shear stress over the bottom wall was visualized qualitatively by SSLCC images, and flow features such as separation/reattachment and the variations of position/size of separation bubble with wedge angle were successfully distinguished. Furthermore, analysis of shear stress trend over the bottom wall by a hue value curve indicated that the relative magnitude of shear stress increased significantly downstream of the separation bubble compared with that upstream. The variation trend of shear stress was consistent with the numerical simulation results, and the error of separation position was less than 2 mm. Finally, the three-dimensional schematic of incident shock-induced interaction has been achieved by qualitative summary by multiple techniques, including SSLCC, oil flow, schlieren, and numerical simulation.


Author(s):  
O. Manca ◽  
S. Nardini ◽  
D. Ricci ◽  
S. Tamburrino

Heat transfer of fluids is very important to many industrial heating or cooling equipments. Convective heat transfer can be enhanced passively by changing flow geometry, boundary conditions or by enhancing the thermal conductivity of the working fluids. An innovative way of improving the fluid thermal conductivity is to introduce suspended small solid nanoparticles in the base fluids. In this paper a numerical investigation on laminar forced convection flow of a water–Al2O3 nanofluid in a duct having an equilateral triangular cross section is performed. The hydraulic diameter is set equal to 1.0×10−2 m. A constant and uniform heat flux on the external surfaces has been applied and the single-phase model approach has been employed. The analysis has been run in steady state regime for a nanoparticle size equal to 38 nm, considering different volume particle concentrations. The CFD code Fluent has been employed in order to solve the tri-dimensional numerical model. Results are presented in terms of temperature and velocity distributions, surface shear stress and heat transfer convective coefficient, Nusselt number and required pumping power profiles. Comparison with results related to the fluid dynamic and thermal behaviors in pure water are carried out in order to evaluate the enhancement due to the presence of nanoparticles in terms of volumetric concentration.


1998 ◽  
Vol 44 (148) ◽  
pp. 498-516 ◽  
Author(s):  
Glen E. Liston ◽  
Matthew Sturm

AbstractAs part of the winter environment in middle- and high-latitude regions, the interactions between wind, vegetation, topography and snowfall produce snow covers of non-uniform depth and snow water-equivalent distribution. A physically based numerical snow-transport model (SnowTran-3D) is developed and used to simulate this three-dimensional snow-depth evolution over topographically variable terrain. The mass-transport model includes processes related to vegetation snow-holding capacity, topographic modification of wind speeds, snow-cover shear strength, wind-induced surface-shear stress, snow transport resulting from saltation and suspension, snow accumulation and erosion, and sublimation of the blowing and drifting snow. The model simulates the cold-season evolution of snow-depth distribution when forced with inputs of vegetation type and topography, and atmospheric foreings of air temperature, humidity, wind speed and direction, and precipitation. Model outputs include the spatial and temporal evolution of snow depth resulting from variations in precipitation, saltation and suspension transport, and sublimation. Using 4 years of snow-depth distribution observations from the foothills north of the Brooks Range in Arctic Alaska, the model is found to simulate closely the observed snow-depth distribution patterns and the interannual variability.


AIAA Journal ◽  
1994 ◽  
Vol 32 (8) ◽  
pp. 1576-1582 ◽  
Author(s):  
Daniel C. Reda ◽  
Joseph J. Muratore

Author(s):  
Gh. Reza Salehi ◽  
Masoud JalaliBidgoli ◽  
Saeed ZeinaliDanaloo ◽  
Kazem HasanZadeh

In this paper, distributions of velocity and flow rate of micro channels are studied. Moreover, the parameters which influence them were also discussed, as well as their effects and relevant curves. In the Analytical study, the governing equation in specific micro flows is obtained. This equation is specifically investigated for slip flow in two micro parallel plates (micro channel).At the next step numerical representation shows the influence of the related parameters in micro channel flow such as Knudsen number, thermal -accommodation coefficient, mass flow rate ratio and pressure ratio (outlet to inlet), Tangential Momentum Accommodation Coefficient with relative curves, and flow rate distribution in slippery state to no slip state has been compared as the another part of this solution. Finally, the results of investigating parameters and dimensionless numbers in micro channels are reviewed.


The seismic interpretation problem for an isotropic spherical earth is analyzed on the basis of elastic theory, under the assumption that the three independent elastic parameters are unknown continuous functions of the depth. It is shown that solutions for these functions may be obtained in the form of Taylor’s series. The problem is treated for three types of symmetrical excitation conditions on the free surface: (1) a shear source of type p rϕ only; (2) a pressure distribution with vanishing surface shear stress; (3) an excitation consisting of pressure in combination with surface shear stress of type p rθ . In each case the excitation functions are arbitrary functions of time. It is assumed that the associated components of surface displacement over the sphere are known from available observations, as functions of time. Thus, the complete information contained in seismic records is used in the proposed interpretation process, without need of selecting, identifying and assigning arrival times to specific events on the records. The two static elastic parameters may theoretically be determined from observations at a single frequency, including the frequency zero, or static case. The determination of the dynamic elastic parameter requires the use of at least two frequencies. Algebraic checks are obtained by comparing the general solutions with the corresponding results for two special cases in which the elastic parameters vary in a prescribed manner in the interior of the sphere. In both these cases treatment by the classical ray-path method of interpretation is excluded, because the wave velocity decreases with depth. Furthermore, the ray-path method (which is essentially a method of geometrical optics) would fail to distinguish between the two examples in any case, since the velocity function is the same in both, although the elastic parameters differ. In contrast to the valuable ray-path method, the analytical procedures in the present solution of the elastic problem are prohibitively cumbersome. Practical application of elastic theory to the direct interpretation of seismograms requires further development of the theory with probable utilization of modern high-speed computing methods.


A numerical solution has been obtained for the development of the flow from the initial unsteady state described by Rayleigh to the ultimate steady state described by Blasius. The usual formulation of the problem in two independent variables is dropped, and three independent variables, in space and time, are reverted to. The boundary-layer problem is unconventional in that the boundary conditions are not completely known. Instead, it is known that the solution should satisfy a similarity condition, and use is made of this to obtain a solution by iteration. A finite-difference technique of a mixed, explicit-implicit, type is employed. The iteration converges rapidly. It is terminated where the maximum errors are estimated to be about 0.04%. A selection of the results for the velocity profiles and the surface shear stress is presented. One striking feature is the rapidity of the transition from the Rayleigh to the Blasius state. The change is practically complete, at a given station on the plate, by the time the plate has moved a distance equal to four times the distance from the station to the leading edge of the plate.


Sign in / Sign up

Export Citation Format

Share Document