TRENDS IN THE DEVELOPMENT OF REACTIVE FIRE PROTECTION (LITERATURE REVIEW)

Author(s):  
Lyubov Vakhitova ◽  
◽  
Nadiya Taran ◽  
Konstantin Kalafat ◽  
◽  
...  

Purpose. Identification of the main directions of evolution of scientific researches concerning development and improvement of fire protective reactive coatings of intumescent type for steel constructions. Methods. Analysis of literature sources, study and generalization of information, classification and modeling of chemical processes. Results. As a result of the performed researches it has been shown that of all the developed reactive fire protection systems for increasing the fire resistance of steel structures the intumescent composition of ammonium polyphosphate/ pentaerythritol / melamine / polymer is the most widespread and economically justified. To reduce the cost of fire protection measures, it is necessary to improve the coatings of the intumescent type in the following main areas: increasing of fire protection efficiency with a decrease in the thickness of the fire protection layer; prolongation of life time with strengthening of resistance to external factors; reducing the cost of the prescription composition of intumescent paint due to the use of nanomaterials. Scientific novelty. It has been established that nanoclays, nanooxides of metals and silicon, LDH compounds and their analogues should be considered the most promising and multifunctional. The presence of nanomaterials in intumescent compositions allows to increase the environmental parameters of fire-retardant treatment due to the rejection of halogen flame retardants, boron compounds, formaldehyde resins. In addition, the presence of nanocompounds in intumescent coatings significantly reduces smoke in fire. Practical significance. The conclusions obtained from the literature review are of practical importance for the development of new approaches to the design of fire-fighting materials with improved performance through the use of nanomaterials, which provides a strong fire retardant foam char layer and provides rigidity of the insulation frame.

2016 ◽  
Vol 835 ◽  
pp. 467-471
Author(s):  
Marcela Halirova ◽  
Radek Janousek ◽  
Hana Sevcikova ◽  
Radek Fabian ◽  
Eva Machovcakova

Fire resistance of building structures is important not only in terms of prevention of hazards to human health, but also from the economic point of view. The choice of method of fire protection of steel structures depends on the responsible choice of finish or cladding material and suitable technology implementation. Although the assessment of fire risk is a priority, when selecting the decisive criteria we must not also forget the cost of fire protection measures. This article aims at economic comparison of the two fire protection measures for the steel column of rolled profiles.


Author(s):  
Lyubov Vakhitova ◽  
◽  
Nadiya Taran ◽  
Konstantin Kalafat ◽  
Volodymyr Bessarabov ◽  
...  

Purpose. The purpose of this work is to study the thermal degradation of epoxy polymers and nanocomposites based on them in a fire retardant intumescent coating having a composition – ammonium polyphosphate / melamine / pentaerythritol. Methods. Thermogravimetric studies have been performed on the device “Thermoscan-2”, fire tests were performed by the method of “Bunsen burner”. Results. The influence of the structure of epoxy resin as a polymer component of the intumescent system on oxidative thermal destruction and fire retardant efficiency of reactive coating has been researched. The obtained results allow us to state that the best result has been demonstrated by Araldite GY 783 – epoxy resin of bisphenols A/F with a reactive solvent. The thermal properties of various epoxy resins and nanocomposites based on them with organomodified montmorillonite have been studied. It was found that montmorillonite in the nanocomposite increases the decomposition temperature of epoxy resin. Scientific novelty. It has been shown that the variation of the polymer component of the intumescent coating has little effect on the swelling rate, but the fire retardant efficiency of the intumescent composition containing epoxy resin of bisphenols A/F is higher than the same characteristic for the composition based on epoxy resin of bisphenol A. It has been established that the exclusion of pentaerythritol from the formulation of the epoxy intumescent system causes the formation of a more regular and durable char insulation layer. It has been proved that the use of additional, including nanostructured flame retardants, namely, modified montmorillonite, can increase the fire retardant efficiency of the coating. Practical significance. The obtained results are of practical importance for the development of new scientific approaches to the design of fire-fighting materials with improved performance characteristics through the use of polymers that provide the construction of a thermostable thermal insulation char layer. Through a series of systematic tests, it has been demonstrated that the use of nanoclay and nanocomposites based on epoxy resins allows to improve the formulations of intumescent coatings with high performance with the help of budget nanotechnologies.


2012 ◽  
Vol 594-597 ◽  
pp. 849-859
Author(s):  
Man Li Ou ◽  
Wei Jun Cao ◽  
Long Min Jiang ◽  
Hui Cao

As the result of great changes occurring to mechanical properties under high temperature (fire) conditions, steel structures will soon lose the strength and stiffness and lead to structural damage. Through analysis of the steel structure fire resistance design methods under the conditions of high temperature (fire), this article explores the most used fire protection methods in steel structures—brushing or painting fire-resistant coatings, studies the fire-resistance theory of steel structure under fire conditions; in addition, the author proposes the reasonable thickness of the steel structure fire retardant coating of fire-resistant design through design examples.


Author(s):  
Г. С. Ліхоносова ◽  
В. Г. Бондаренко

The article considers the organization of the cost management system as an object of accounting, the factors that affect the cost and effectiveness of methods of audits of costs for the production of aerospace products. The purpose of the article is to present the issues of accounting and analytical support and audit of the cost management system in the aerospace industry with a focus on the features of accounting and audit of the cost system in the aerospace industry. The methodological basis of the study is a number of scientific methods, including methods of empirical research - comparison, methods of theoretical knowledge – formalization and general research methods - analysis, synthesis and grouping. The main hypothesis of the study was the assumption that the accounting and analytical support of cost management system is influenced by various factors, including: type of production, features of its organization, product range, enterprise management structure, organization of accounting by places and centers of responsibility, cost accounting methods and costing products and the level of automation of accounting work. Presenting main material. It was found that cost accounting occupies a decisive place in accounting and analytical support and audit procedures. The formation of accounting and analytical support of the cost management system in the aerospace industry largely depends on the factors influencing the formation of the cost and the organization of the analysis of the component costs of enterprises. The organization of synthetic and analytical accounting of production costs should ensure: reflection of all performed operations on costs, appropriate distribution of costs by objects of accounting and calculation objects, determination of production costs, timely receipt of necessary information for management purposes. The originality and practical significance of the study is confirmed by the analysis of the possibility of auditing the enterprises of the aerospace industry. The proposed method of accounting and costing is of practical importance and can be used for other enterprises in the aerospace industry. Conclusions and prospects for further research. The method of cost accounting presented in the article is of practical importance for the enterprises of the aerospace industry. Further research will be aimed at improving the accounting and analytical support and algorithms for audits of the cost management system in the aerospace industry


2021 ◽  
Vol 4 (10(112)) ◽  
pp. 45-51
Author(s):  
Yuriy Tsapko ◽  
Zinovii Sirko ◽  
Roman Vasylyshyn ◽  
Oleksandr Melnyk ◽  
Аleksii Tsapko ◽  
...  

This paper reports an analysis of the flame retardants for fabrics that has revealed the fact that the meagerness of data to explain and describe the process of fire protection, specifically the neglect of elastic coatings, leads to that the structures made from fabrics are ignited under the influence of a flame. Devising reliable methods to study the fire protection conditions for fabrics results in the design of new types of fireproof materials. Therefore, there is a need to determine the conditions for the formation of a barrier for water mass transport and to establish a mechanism for slowing down water penetration through the material. In this regard, an estimation-experimental method has been constructed for determining mass transfer under the action of water when using a hydrophobic coating, which makes it possible to assess water penetration. Based on the experimental data and theoretical dependences, the intensity of mass flow under the action of water has been determined, which is 0.000177 kg/m2, which ensures fabric resistance. The study results have proven that the process of waterproofing the fabric involves inhibition of the mass transfer process under the action of water by insulating the surface of the fireproof fabric with a hydrophobic coating. It should be noted that the presence of a hydrophobic coating leads to blocking the fabric surface from moisture penetration. Such a mechanism behind the effect of the hydrophobic coating is likely the factor in adjusting the process through which the integrity of an object is preserved. Thus, the sample of fireproof fabric coated with a water repellent demonstrated, after exposure to water, that the amount of water absorbed did not exceed 0.00012 kg, and, for a fabric without a water repellent, was 0.01 kg. Thus, there is reason to assert the possibility of targeted adjustment of the processes related to water penetration of the fabric by using hydrophobic coatings that could form a protective layer on the surface of the material, which inhibits the rate of water penetration.


Author(s):  
V.I. Golovanov ◽  
◽  
A.V. Pekhotikov ◽  
V.V. Pavlov ◽  
◽  
...  

Variants of progressive solutions for the use of efficient fire protection means for steel and reinforced concrete structures of the industrial buildings and structures are considered for the purpose of increasing the actual fire resistance and ensuring the requirements of fire safety norms. Distinctive features of the temperature regimes in the initial phase of a real fire from a standard fire were established when assessing the fire resistance of building structures. It is proposed to use such standardized temperature regimes of fire for assessing the fire resistance of building structures, as standard — in the industrial buildings; temperature regime of hydrocarbons combustion — for oil and gas, petrochemical enterprises, offshore stationary platforms; tunnel temperature regime — in the road and railway tunnels. Considering the operating conditions and performance of work on fire protection, the degree of aggressiveness of the environment, the structural and methodological scheme was developed for selecting passive fire protection for steel structures. Recommendations are given on limiting the use of intumescent paints for load-bearing steel structures involved in the overall stability of buildings, with the required fire resistance limit of no more than 30 minutes. To calculate the temperature over the section of the structure during its heating, the dependences of the change in the coefficients of thermal conductivity and heat capacity of fire-retardant linings under fire were obtained. Experimental studies were conducted related to the fire resistance of reinforced concrete floor slabs and slabs with an external reinforcement system based on the carbon composite material with various types of fire-retardant materials. The issue of protecting the lining blocks of road and railway tunnels from brittle (explosive) destruction of concrete in a fire is considered. It is experimentally confirmed that the addition of polypropylene fibers to the concrete mixture replaces the use of fire protection for the tunnels enclosing structures.


Author(s):  
Z. Sirko ◽  
◽  
E. Starysh ◽  
N. Tsireny ◽  
O. Tsapcko ◽  
...  

The article presents the results of research on the creation of flame retardant composition for fire protection of cellulose-containing materials. The analysis was performed of flame retardant compositions for impregnation of cellulose-based materials. Phosphorus-based compounds have been shown to be most effective in providing fire protection in the solid phase and during decomposition. They are able to decompose when heated to form phosphoric acid, which inhibits direct oxidation and greatly reduces the spread of fire. Also, noteworthy are compositions based on salts and acids of phosphorus and nitrogen. The mechanism of action of these compositions is aimed at reducing the amount of heat during combustion and becomes insufficient for self-combustion. It was also found that during ignition fire-retardant compositions interact with the components of cellulose, which forms residual phosphorus and nitrogen, resulting in increased efficiency of fire-retardant action. Fire-retardant impregnating compositions are aqueous solutions of flame retardants. The materials are impregnated in a container with a flame retardant solution or sprayed on the surface of the material with an industrial spray. This method is simple and effective, but the result is short-lived. More effective is the method of introducing flame retardant at the molecular level into the fiber structure. One of the important methods is to restore the fire-retardant properties of materials during their operation and products from them.


2020 ◽  
pp. 43-54
Author(s):  
Владимир Ильич Голованов ◽  
Андрей Владимирович Пехотиков ◽  
Владимир Валерьевич Павлов

Представлены результаты анализа экспериментальной и аналитической оценки огнезащитной эффективности покрытий для стальных конструкций. Обобщены данные многолетних исследований по определению зависимостей от температуры таких теплофизических характеристик, как теплопроводность и теплоемкость. Разработана структурно-методологическая схема выбора огнезащитных покрытий для стальных конструкций в целях обеспечения нормативных требований по огнестойкости. Проведены экспериментальные исследования по определению огнезащитной эффективности терморасширяющихся покрытий на эпоксидной основе при воздействии температурного режима горения углеводородов. Рассмотрен вопрос о гармонизации методики экспериментальной оценки огнезащитной эффективности средств огнезащиты для стальных конструкций с действующими европейскими нормами. Установлены критерии выбора пассивной огнезащиты, зависящие от области применения способов огнезащиты. Steel structures have high strength, relative lightness and durability, but when exposed to high temperatures in a fire, they deform, lose stability and load-bearing capacity. The collapse of load-bearing steel structures can occur in 10-15 minutes after the fire start. The actual fire resistance limit of structures can be increased by using the active and passive fire protection systems. The use of the active system for increasing the actual fire resistance limit is not provided in the regulatory documents. Passive fire protection is a complex of technical solutions including the use of non-flammable materials and bulging compounds. It is also an integral part of the building structure that ensures the required fire resistance limit. Assessment of fire resistance of building structures of residential, public, warehouse and industrial buildings is carried out taking into account the temperature regime (cellulose) of a standard fire. At oil and gas, petrochemical enterprises as well as at oil production platforms fires can occur at combustion of various hydrocarbon fuels which are characterized by a rapid temperature increase to 1100 °C. In this case, in accordance with GOST R EN 1363-2-2014, the temperature regime of hydrocarbon combustion is used to assess the fire resistance of building structures. The fire-retardant effectiveness of fire protection means for steel structures is determined by the heating time of the standard I-shaped column without applying a static load on the sample to the average “critical” temperature of the steel of 500 °C. Materials used for fire protection of steel structures must have a good thermal insulation ability, which is estimated by the coefficient of thermal conductivity. When heated to high temperatures, the thermal conductivity coefficient of fire-resistant materials varies depending on their composition and temperature. Based on the analysis of research to determine the fire-retardant effectiveness of fire protection means for steel structures there was developed a structural and methodological scheme that allows to make a choice of fire protection. Currently, as a fire protection there are widely used intumescent paints and thermo-expandable coatings. Taking into account the lack of knowledge of the influence of long-term operation and a large number of other technological factors on the fire-retardant effectiveness of coatings of steel structures covered with intumescent paints, it would be right to limit the use of such type of fire protection for load-bearing structures contributing to the overall sustainability of buildings with a required fire resistance of R 30. For fire protection of steel structures of oil and gas facilities located in the open air, in severe climatic conditions and exposed to aggressive environments there is successfully used a thermo-expandable two-component epoxy-based coating. The analysis of experimental data showed that the use of epoxy-based coatings is suitable for metal structures in the open air. In closed rooms the epoxy intumescent coating should not be used because at high temperature in a fire it ignites with toxic combustion products release.


Fire Safety ◽  
2018 ◽  
pp. 95-100
Author(s):  
M. Semerak ◽  
D. Kharyshyn ◽  
N. Ferents ◽  
T. Berezhanskyi

Currently, in Ukraine and abroad for the construction of high-rise buildings and structures using pipe-like structures. Wide application of pipe concrete columns is due to their high carrying capacity at relatively smaller overall dimensions due to the blocking of cracking in concrete by a steel clasp. The advantages of concrete columns should include more simplified conditions of technology of manufacturing and installation on their basis of bearing structures of floor covering. Piping constructions consist of steel shells and concrete core. Since the steel pipe mainly provides the bearing capacity of the concrete column, its failure or reduction of stiffness, which is characteristic of the fire under the influence of its thermal factors, leads to destruction. Investigation of fire resistance of concrete structures, which are not protected by flame retardant coatings, showed that a steel clasp during a fire after 15 minutes is heated to a critical temperature of 500 ° C.The use of flame retardant coatings is an effective method of fire protection of concrete constructions, which prevents the rapid heating of steel welds and provides a normalized fire resistance limit for such structures. In this work, studies were carried out on the effectiveness of fire protection of concrete columns with different types of fire-retardant materials - mineral wool slabs, special flame retardants and flame-retardant coatings. For fire protection mineral wool materials were used ROCKWOOL plates of the series "Conlit SL150". Mineral wool plates "Conlit SL 150" consist of fibers of rocks of a basalt group, they can withstand, without melting, temperature more than 1000 ° С. The silica-based adhesive "Conlit Glue" can withstand temperatures above 900 ° C, has good adhesion when bonding Conlit SL 150 mineral wool slabs with protective structures. From the second type of fire-retardant materials, the fire-proof composition "Naktresk" was chosen on the basis of gypsum. The coating is formed in the process due to hardening of the mixture on protected surfaces. The third type of flame retardant materials is the flame-retardant intumessent coating "Pyro-Safe Flammoplast SP-A2".It has been established that with the use of fire protection systems on the basis of mineral wool plates "Conlit SL150" and fire retardant "Nutresc", the fire resistance class of reinforced concrete columns increases from R 15 to R 180. The fire protection system on the basis of the painted paint "Pyro-Safe Flammoplast SP-A2" »Increases fire resistance from R 15 to R 75


Author(s):  
A. Kovalov ◽  
◽  
Y. Otrosh ◽  
V. Tomenko ◽  
O. Vasylyev ◽  
...  

Abstract. The results of the development of fire-retardant substances based on domestic materials to increase the fire resistance of fire-retardant steel structures are presented. New compositions of fire-retardant substances on the basis of domestic materials capable of swelling are developed. A series of experimental studies to determine the heating temperature of fire-resistant steel structures. For this purpose, samples of reduced size in the form of a steel plate with a flame retardant applied to the heating surface were used. Fire tests of fire-retardant steel plates coated with the developed fire-retardant substance forming a coating on the protected surface, in the conditions of their tests on the standard temperature of the fire using the installation to determine the fire-retardant ability of fire-retardant coatings. The results of experimental determination of temperature from an unheated surface of steel plates with a fire-retardant covering in the conditions of fire influence at a standard temperature mode of a fire are analyzed. Based on the obtained data (temperature in the furnace and from the unheated surface of steel plates with fire protection system) the solution of the inverse problems of thermal conductivity found thermophysical characteristics of fire protection coating (thermal conductivity and specific volume), which can be used for thermal calculation heating of fire-retardant steel structures at arbitrary fire temperatures. The thermophysical characteristics of the formed fire-retardant coating are substantiated to find the characteristics of the fire-retardant ability of the newly created fire-retardant coating and to ensure the fire resistance of fire-retardant steel structures. The efficiency of the developed fire-retardant coating for protection of steel structures is proved.


Sign in / Sign up

Export Citation Format

Share Document