scholarly journals Study of the kinetics of Bombyx mori chitosan ascorbate formation

2020 ◽  
Vol 99 (3) ◽  
pp. 38-43
Author(s):  
K.K. Pirniyazov ◽  
◽  
S.Sh. Rashidova ◽  

In this work, for the first time, a water-soluble natural biopolymer of chitosan ascorbate based on Bombyx mori chitosan and ascorbic acid was obtained and kinetic features of the process were determined. Samples of chitosan ascorbate were synthesized, the interaction of chitosan with ascorbic acid was studied by analytical titration. The synthesis was carried out in order to determine the activation energy of formation of the reaction of chitosan ascorbate, in the ratio of chitosan and ascorbic acid (4:1) components for 15 minutes with a reaction temperature ranging from 25°C to 65°C. The results of the kinetic studies show that in the interaction under the study the reaction order on ascorbic acid concentration exceeds the reaction order on chitosan concentration, while the reaction activation energy was determined, which equals to 13.38 kJ/mol. This result allows us to conclude that during the formation of chitosan ascorbate at 55 °C the highest equilibrium constant is established, and a further increase in temperature leads to a decrease in the yield and equilibrium constant. The results obtained indicate that with an increase in the concentration of ascorbic acid compared to the one of chitosan, the reaction rate increased almost twice. It was found that with an increase in the reaction time, the average rate of synthesis gradually decreases. This is due to the fact that with an increase in the duration of the reaction in the solution the concentration of unbound (free) ascorbic acid decreases, and as a result, the reaction rate decreases as well.

2007 ◽  
Vol 60 (2) ◽  
pp. 99 ◽  
Author(s):  
Shiying Zhang ◽  
Chen Lai ◽  
Kun Wei ◽  
Yingjun Wang

Hydroxyapatite nanowires with a high axial ratio have been synthesized in reverse micelle solutions that consist of cetyltrimethylammonium bromide (CTAB), n-pentanol, cyclohexane, and the reactant solution by solvothermal methods. This paper focusses on the kinetic studies of the solvothermal reaction and the linear growth of hydroxyapatite nanowires. When the reaction was carried out at low temperatures (65°C), the experimental results showed that the reaction rate was of zero order since the whole reaction was diffusion controlled with constant diffusion coefficients. In the middle to high temperature range (130–200°C), the kinetics were characterized by second order reaction kinetics. Since the controlling factor was activation energy and the apparent activation energy was large, the reaction rate was more sensitive to the temperature. Therefore, the exponent of the reaction rate constant increased by two when the temperature was increased from 130 to 200°C. By calculating the yields of products and the specific surface areas at different times, the linear and overall growth rate equations of the hydroxyapatite nanowires could be obtained. The experimental effective growth order of the crystals was 11. The larger growth order indicated that the crystal could grow more effectively in one direction because of the induction of the surfactant in the experiment system.


2015 ◽  
Vol 8 (2) ◽  
pp. 116
Author(s):  
Fitria Rahmawati ◽  
Wanodya Anggit Mawasthi ◽  
Patiha

Research on the kinetics of electrode reaction during copper electro-deposition on the surface of TiO2/graphite has been conducted. The aims of this research are to determine the ratio of anodic reaction rate to cathodic reaction rate , the ratio of anodic rate constant to cathodic rate constant , the equilibrium constant when the reaction reach equilibrium condition and to study the polarization in the electro-deposition reaction. Copper was deposited electrochemically from CuSO4 solution at various concentration i.e. 0.1 M; 0.2 M; 0.3 M; 0.4 M; 0.5 M. In every 5 minutes during electro-deposition process, the pH changes in anode cell was recorded and the change of Cu2+ concentration was also analyzed by spectrophotometric method. The result shows that the reaction order of Cu2+ reduction is first order and the oxidation of H2O in anodic cell is zero order. The ratio of anodic rate constant to cathodic rate constant, is 4.589´10-3 ± 0.071´10‑3. It indicates that the reaction rate  in cathode is larger than the reaction rate in anode and it allowed polarization.  The electrochemical cell reached equilibrium after 25 minutes with the equilibrium constant is 8.188´10-10 ± 1.628´10-10.


2011 ◽  
Vol 183-185 ◽  
pp. 2124-2128
Author(s):  
Yun Wu Zheng ◽  
Li Bin Zhu ◽  
Ji You Gu ◽  
Zhi Feng Zheng ◽  
Yuan Bo Huang

Curing is the key to the bonding, this paper considered the production practice, studied the curing properties of different MUF resin under the different curing agent with DSC. The experimental results show that: The characteristics temperature of curing reaction is closely related to the β. With the increase of β, the initial and peak temperature is moving to the high-temperature, the curing time became shorter; the range of curing temperature became much wider. At the same time, the curing peaking temperature was decreased and the Enthalpy integral of curing reaction was reduced first then increased with the increased of the amount of curing agent. When the amount of curing agent occupied 4.0%-6.0% of the MUF resin, the pH was decreased mostly, and the curing reaction rate run up quickly Along with the increasing of n (F): n (U1), the To, Tp and Ti are going ahead distinctly after hardening. At the same time, both activation energy and reaction order are all decreased, absorbed heat is dropping too. So, curing technics became easily.


1964 ◽  
Vol 42 (10) ◽  
pp. 2239-2249 ◽  
Author(s):  
D. M. Graham ◽  
R. L. Mieville ◽  
C. Sivertz

Kinetic studies have been made of the isomerization of butene-2 and 1,2-ethylene-d2 catalyzed by thiyl radicals produced from the photolysis of methanethiol. The rate of isomerization was found to be first order with respect to both the olefin and [Formula: see text] concentrations. The lack of influence of pressure on the reaction rate, at pressures above about 4 mm, leads to a simple mechanism in which isomerization is considered to occur as a result of thermal decomposition of the collisionally stabilized adduct radical produced in the reaction [Formula: see text]. The rate constants for this attack step were found to be 2 × 107 and 4.8 × 106 l mole−1 s−1 for butene-2 and ethylene-d2, respectively. In both cases the activation energy for isomerization was found to be close to zero. From a kinetic study of the isomerization of cis-butene-2 in the presence of butadiene-1,3, which acts as a retarder, the attack constant for butadiene at 25 °C was found to be 4.5 × 108 l mole−1 s−1.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Linda Katsch ◽  
Frank-Jürgen Methner ◽  
Jan Schneider

Abstract Preservation of juices is essential to obtain microbial safe products. There are various established methods as pasteurization. Heretofore, only the kinetic figures of microbial inactivation were considered but not those of reaction impairing the chemical quality. For a gentler processing, knowledge of the kinetics of relevant chemical conversion reactions is necessary. 5-(Hydroxymethyl)-furfural (HMF) formation and the color change of juices are important attributes. The non-isothermal Rhim method was used to determine the activation energy and pre-exponential factor for HMF formation in different juices and an isothermal method for the reaction order. Values for the activation energy from 133 to 303 kJ/mol were obtained with a zeroth reaction order. A correlation between HMF and the color change could be found. Based on the kinetic figures, lines with equal effects for the chemical changes and for the lethal effect on microorganisms were calculated. Time-temperature settings for the gentlest treatment could be found.


2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


2003 ◽  
Vol 73 (1) ◽  
pp. 3-7 ◽  
Author(s):  
M. E. Mavrikakis ◽  
J. P. Lekakis ◽  
M. Papamichael ◽  
K. S. Stamatelopoulos ◽  
Ch. C. Kostopoulos ◽  
...  

Previous studies have shown that patients with Raynaud’s phenomenon secondary to systemic sclerosis present abnormal endothelial function; the mechanisms responsible for the endothelial dysfunction are unknown but increased vascular oxidative stress could be a possible cause. The hypothesis that a potent water-soluble antioxidant can reverse endothelial dysfunction in these patients was tested in the present study. We examined 11 female patients with Raynaud’s phenomenon secondary to systemic sclerosis and ten healthy control women by ultrasound imaging of the brachial artery to assess flow-mediated (endothelium-dependent) and nitrate-induced (endothelium-independent) vasodilatation. Flow-mediated dilatation and nitrate-induced dilatation were significantly reduced in patients with Raynaud’s phenomenon, indicating abnormal endothelial and smooth muscle cell function. Patients with Raynaud’s phenomenon entered a double-blind, randomized, crossover placebo-controlled trial and received orally 2 g of ascorbic acid or placebo; vascular studies were repeated two hours after ascorbic acid or placebo administration. Flow-mediated dilatation did not improve after ascorbic acid (1.6 ± 2.2% to 2.2 ± 2.5%, ns) or placebo administration (1.2 ± 1,9% to 1.7 ± 1.4%, ns); also nitrate-induced dilatation was similar after ascorbic acid or placebo (16 ± 7.4% vs 17 ± 8%, ns), suggesting no effect of ascorbic acid on endothelial and vascular smooth muscle function. In conclusion, ascorbic acid does not reverse endothelial vasomotor dysfunction in the brachial circulation of patients with Raynaud’s phenomenon secondary to systemic sclerosis. The use of different antioxidants or different dosing of ascorbic acid may be required to show a beneficial effect on endothelial vasodilator function.


2020 ◽  
Vol 16 (7) ◽  
pp. 905-913
Author(s):  
Youyuan Peng ◽  
Qingshan Miao

Background: L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to its role in the biological metabolism, AA has also been utilized for the therapy of mental illness, common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop a simple, rapid and selective strategy for the detection of AA in various samples. Methods: The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine (oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of the imprinted polymer film. Results: Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations of AA, and the detection limit was 2 nmol L-1 (S/N=3). Conclusion: The proposed electrochemical sensor possesses excellent selectivity for AA, along with good reproducibility and stability. The results obtained from the analysis of AA in real samples demonstrated the applicability of the proposed sensor to practical analysis.


1998 ◽  
Vol 63 (11) ◽  
pp. 1945-1953 ◽  
Author(s):  
Jiří Hanika ◽  
Karel Sporka ◽  
Petr Macoun ◽  
Vladimír Kysilka

The activity of ruthenium, palladium, and nickel catalysts for the hydrogenation of 1,2-dihydroacenaphthylene in cyclohexane solution was studied at temperatures up to 180 °C and pressures up to 8 MPa. The GC-MS technique was used to identify most of the perhydroacenaphthylene stereoisomers, whose fractions in the product were found dependent on the nature of the active component of the catalyst. The hydrogenation was fastest on the palladium catalyst (3% Pd/C). The nickel catalyst Ni-NiO/Al2O3, which is sufficiently active also after repeated use, can be recommended for practical application. The activation energy of 1,2-dihydroacenaphthylene hydrogenation using this catalyst is 17 kJ/mol, the reaction order with respect to hydrogen is unity.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Jiangyan Yuan ◽  
Hongwen Ma ◽  
Zheng Luo ◽  
Xi Ma ◽  
Qian Guo

To make potassium from K-bearing rocks accessible to agriculture, processing on biotite syenite powder under mild alkaline hydrothermal conditions was carried out, in which two types of KAlSiO4 were obtained successfully. The dissolution-precipitation process of silicate rocks is a significant process in lithospheric evolution. Its effective utilization will be of importance for realizing the comprehensiveness of aluminosilicate minerals in nature. Two kinds of KAlSiO4 were precipitated in sequence during the dissolution process of biotite syenite. The crystal structures of two kinds of KAlSiO4 were compared by Rietveld structure refinements. The kinetics model derived from geochemical research was adopted to describe the dissolution behavior. The reaction order and apparent activation energy at the temperature range of 240–300 °C were 2.992 and 97.41 kJ/mol, respectively. The higher dissolution reaction rate of K-feldspar mainly relies on the alkaline solution, which gives rise to higher reaction order. During the dissolution-precipitation process of K-feldspar, two types of KAlSiO4 with different crystal structure were precipitated. This study provides novel green chemical routes for the comprehensive utilization of potassium-rich silicates.


Sign in / Sign up

Export Citation Format

Share Document