scholarly journals Development and validation of stability indicating HPTLC method for estimation of pirfenidone and characterization of degradation product by using mass spectroscopy

2020 ◽  
Vol 99 (3) ◽  
pp. 51-60
Author(s):  
R. P. Bhole ◽  
◽  
S.R. Jagtap ◽  
C.G. Bonde ◽  
Y.B. Zambare ◽  
...  

Pirfenidone is used as a novel antifibrotic agent approved for mild-to-moderate idiopathic pulmonary fibrosis. An extensive literature search revealed that, method validation by high-performance thin-layer chromatography (HPTLC) and structural determination by tandem mass spectrometry (MS/MS) method was not reported till date. Precoated silica gels plates were used as a stationary phase. Methanol: ethyl acetate: toluene (1:2:7 v/v) was delivered best separation at 315 nm (Rf 0.49±0.03) by densitometry analysis. Degradation analysis was performed as per ICH guidelines Q2 (R1). Isolation of degradation product was done by the HPTLC method and characterized by using MS/MS method. All the validation parameters were found within the range. Moreover, its possible degradation pathway was also proposed. The Proposed developed and validated HPTLC method was found to be more sensitive, simple, precise, accurate, cost-effective and robust. This method could be applied for the analysis of bulk drug and tablet formulation, degradation study. This degradation pathway of the drug will further help to identify the degradation products of Pirfenidone which may be used for the impurity profiling of the drug.

2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


Author(s):  
Kavitha J ◽  
Bonda Vismitha ◽  
Kokilambigai KS ◽  
Seetharaman R ◽  
Lakshmi KS

Oxetacaine is a potent local anesthetics used to relieve pain associated with peptic ulcer. The current method details about a rapid, accurate and precise HPTLC technique for the assessment of Oxetacaine in Pharmaceutical formulation. Chromatographic resolution was carried out on precoated HPTLC plates (Silica gel 60 F254 on Aluminum plate) employing methanol: water: glacial acetic acid (8: 1.8: 0.2 v/v/v) as mobile phase. Densitometric assessment was carried out at 220nm [Camag TLC Scanner III with winCATs software (version – 1.3.4)]. The drug was identified with a Rf value of 0.61. The reliability of the projected method was ascertained by evaluating various validation parameters as per ICH guidelines. The proposed technique can evaluate ten or more formulation units concurrently in a single run and affords a more rapid and cost-effective QC tool for regular analysis of Oxetacaine in pharmaceutical formulations.


2018 ◽  
Vol 5 (10) ◽  
pp. 181359 ◽  
Author(s):  
Samah Abo El Abass ◽  
Heba Elmansi

A green, sensitive and cost-effective method is introduced in this research for the determination of bambuterol and its main degradation product, terbutaline, simultaneously, relying on the synchronous spectrofluorimetric technique. First derivative synchronous spectrofluorimetric amplitude is measured at Δ λ = 20 nm, so bambuterol can be quantitated at 260 nm, and terbutaline can be measured at 290 nm, each at the zero crossing point of the other. The amplitude–concentration plots were linear over the concentration ranges of 0.2–6.0 µg ml −1 and 0.2–4.0 µg ml −1 for both bambuterol and terbutaline, respectively. Official guidelines were followed to calculate the validation parameters of the proposed method. The low values of limits of detection of 0.023, 0.056 µg ml −1 and limits of quantitation of 0.071, 0.169 µg ml −1 for bambuterol and terbutaline, respectively, point to the sensitivity of the method. Bambuterol is a prodrug for terbutaline, and the latter is considered its degradation product so the established method could be regarded as a stability-indicating one. Moreover, the proposed method was used for the analysis of bambuterol and terbutaline in their single ingredient preparations and the results revealed statistical agreement with the reference method. The suggested method, being a simple and low-cost procedure, is superior to the previously published methods which need more sophisticated techniques, longer analysis time and highly toxic solvents and reagents. It could be considered as an eco-friendly analytical procedure.


Author(s):  
Sagar B. Wankhede ◽  
Deepak S. Khobragade ◽  
Sukeshini B. Lote ◽  
S. Patil

A combined dose tablet formulation containing Amlodipine besylate and Lisinopril is used for the treatment of essential hypertension. The present study reports development and validation of stability indicating high performance thin layer chromatographic method for simultaneous estimation of these drugs in combined dose tablet formulation. The two drugs were satisfactorily resolved on aluminum plates precoated with silica gel 60F254 using n-butanol : methanol: ammonia (4:4:1 v/v/v) as mobile phase. The Rf value for lisinopril and amlodipine besylate were 0.27±0.02 and 0.62±0.02, respectively. Densitometric evaluation of the separated bands was performed at 215nm. The calibration curves for lisinopril and amlodipine besylate were found to be linear in the concentration range of 1000-6000ng/band. The method was validated as per ICH guidelines for accuracy, precision, robustness, specificity, limit of detection and limit of quantitation. Statistical analysis proves that the method is suitable for simultaneous analysis of Lisinopril and Amlodipine besylate in pharmaceutical formulation without any interference from the excipients/degradant. The developed method offers several advantages such as sensitive, rapid, cost effective and less time consuming as compared to the reported methods. As the method could effectively separate the drugs from its degradation products, it can be employed as a stability indicating method.


2019 ◽  
Vol 102 (4) ◽  
pp. 1014-1020
Author(s):  
Lisa J Patel ◽  
Manan A Raval ◽  
Samir G Patel ◽  
Archita J Patel

Abstract Background: Ayurvedic medicines help in healing disease with fewer undesirable effects in comparison with an allopathic system of medicine to treat central nervous system (CNS) disorders, as the latter is more expensive. Centella asiatica L. is often used in Ayurvedic formulations for the treatment of CNS disorders. Objective: A stability test using an HPTLC method for the estimation of an important marker asiaticoside (ASI) from C. asiatica powder and marketed formulation was developed. Methods: The marker compound ASI from plant powders and marketed formulations were resolved using toluene–ethyl acetate–methanol–glacial acetic acid (2+7+3+1, v/v/v/v) as the mobile phase and then was derivatized. The plant powder and marketed formulation were also subjected to stability studies. Results: The Rf value of ASI was found in range of 0.43–0.47 for the standard ASI, plant powder, and marketed formulation. It was found that the plant powder and formulation exhibited first-order degradation kinetics. Conclusions: The contents of ASI in the formulation (Churna) and its flow characters reduced at the end of the 6 months during an accelerated stability study. The developed method can be used to quantify ASI in the presence of its degradation products. Highlights: The developed method helps in determining batch to batch variation in the content of ASI in herbal formulations.


2008 ◽  
Vol 91 (4) ◽  
pp. 709-719 ◽  
Author(s):  
Gulshan Bansal ◽  
Manjeet Singh ◽  
Kaur Chand Jindal ◽  
Saranjit Singh

Abstract A forced degradation study on glibenclamide was performed under conditions of hydrolysis, oxidation, dry heat, and photolysis and a high-performance column liquid chromatographic-ultraviolet (HPLC-UV) method was developed to study degradation behavior of the drug under the forced conditions. The degradation products formed under different forced conditions were characterized through isolation and subsequent infrared/nuclear magnetic resonance/mass spectral analyses, or through HPLC/mass spectrometric (HPLC/MS) studies. The drug degraded in 0.1 M HCl and water at 85C toamajor degradation product, 5-chloro-2-methoxy-N-2-(4-sulfamoylphenyl)ethyl]benzamide (III), and to a minor product, 1-cyclohexyl-3-[[4-(2-aminoethyl)-phenyl]sulfonyl]urea (IV). Upon prolonged heating in the acid, the minor product IV disappeared, resulting in formation of 5-chloro-2-methoxy-benzoic acid (II) and an unidentified product (I). Heating of the drug in 0.1 M NaOH at 85C yielded II and IV as the major products and I and III as the minor products. The drug and the degradation products formed under different conditions were optimally resolved on a C18 column using ammonium acetate buffer (0.025 M, pH 3.5)acetonitrile (45 + 55) mobile phase at a flow rate of 0.6 mL/min, with detection at 230 nm. The method was validated for linearity, precision, accuracy, and specificity. Limit of detection (LOD) and limit of quantitation (LOQ) values were also determined. The method could be successfully applied for simultaneous quantification of glibenclamide and the major product, III. The response of the method was linear in a narrow [0.410 g/mL, correlation coefficient (r2 = 0.9982] and a wide (0.4500 g/mL, r2 = 0.9993) concentration range for glibenclamide, and in the concentration range of 0.02550 g/mL (r2 = 0.9998) for III. The method proved to be precise and accurate for both glibenclamide and III. It was specific for the drug and also selective for each degradation product, and LOQ values for the drug were 0.1 and 0.4 g/mL, whereas those for III were 0.010 and 0.025 g/mL, respectively.


2009 ◽  
Vol 92 (5) ◽  
pp. 1602-1606 ◽  
Author(s):  
María A Rosasco ◽  
Rita Ceresole ◽  
Clara C Forastieri ◽  
Adriana I Segall

Abstract An isocratic HPLC method was developed and validated for the quantitation of methocarbamol in the presence of its degradation products. Quantitation was achieved using a reversed-phase C18 column at ambient temperature with mobile phase consisting of methanolwatertetrahydrofuran (25 + 65 + 10, v/v). The flow rate was 0.9 mL/min. The detection was by UV light at 274 nm. The proposed method was validated for selectivity, precision, linearity, and accuracy. The assay method was found to be linear from 159.0 to 793.2 g/mL (3.2 to 15.9 g injected). All validation parameters were within the acceptable range. The developed method was successfully applied to estimate the amount of methocarbamol in a veterinary injection.


2020 ◽  
Vol 16 (2) ◽  
pp. 149-157
Author(s):  
Thasleem Moolakkadath ◽  
Mohd Aqil ◽  
Syed Sarim Imam ◽  
Abdul Ahad ◽  
Arshiya Praveen ◽  
...  

Background: A stability indicating high-performance thin layer chromatography (HPTLC) method was developed for the evaluation of fisetin (FIS) in active pharmaceutical ingredient (API) and marketed capsule formulation in accordance with the ICH guidelines. Methods: The mobile phase combination toluene: ethyl acetate: formic acid: methanol (3: 5.5: 1: 0.5 v/v/v/v) was optimized with the aid of AQbD approach. The absorbance mode at 254 nm was chosen for densitometric analysis as it gives a compact spot of FIS at Rf value of 0.74. Results: The R2 value obtained from the linear regression equation of calibration plots made by taking the spot in the concentration range of 100-1400 ng/spot was found to be 0.9993. The observed LOD and LOQ value was found to be 29.8 ng/spot and 98.5 ng/spot, respectively. The exposure of FIS to various stress conditions revealed the fact that the drug is stable in photochemical and dry heat stress conditions without any degradation. The drug-exposed to acidic, alkaline and oxidative stress was found to be degraded into different degradation products with the highest degradation was found in alkaline stress. All degradation products were observed to be fairly separated from well-resolved parent peak of FIS. Conclusion: The developed HPTLC method have shown well-resolved peaks and also shown good recovery in the compound FIS as well as FIS formulation.


2018 ◽  
Vol 101 (4) ◽  
pp. 1031-1041 ◽  
Author(s):  
Mamdouh R Rezk ◽  
Ahmed S Fayed ◽  
Hoda M Marzouk ◽  
Samah S Abbas

Abstract The chromatographic analysis of either process-related impurities or degradation products is very important in the pharmaceutical industry. In this work, a simple, selective, and sensitive HPTLC method was developed and validated for the simultaneous determination of zofenopril calcium (ZOF) and hydrochlorothiazide (HCT) in the presence of the HCT impurities: A) chlorothiazide (CT) and B) salamide, in raw materials and in pharmaceutical formulation. The separation was carried out on HPTLC silica gel 60 F254 using ethyl acetate–glacial acetic acid–triethylamine (10 + 0.1 + 0.1, v/v/v) as a developing system. The separated bands were scanned densitometrically at 270 nm. Polynomial equations were used for the regression. Calibration curves were constructed for ZOF, HCT, CT, and salamide in the ranges of 0.5–10, 0.2–4, 0.05–1.4, and 0.05–1.0 μg/band, respectively. Different parameters affecting the suggested method, including developing systems of varying composition/ratios and different detection wavelengths, were studied to achieve the best resolution and precision with good sensitivity. System suitability parameters were also tested. The proposed method was validated as per the International Conference on Harmonization guidelines and was successfully applied for the quantification of the studied drugs in their pharmaceutical formulation, with no interference from excipients observed. The results obtained by the developed HPTLC method were compared statistically with those obtained by the reported HPLC method using Student’s t and F ratio tests, and no significant difference was obtained, indicating the ability of the proposed method to be used for routine analysis of drug product.


2021 ◽  
Vol 16 (4) ◽  
pp. 752-762
Author(s):  
Mohammad Rofik Usman ◽  
Azmi Prasasti ◽  
Sovia Islamiah ◽  
Alfian Nur Firdaus ◽  
Ayu Wanda Marita ◽  
...  

The popular use of ciprofloxacin is often irrational, so it causes environmental pollution such as resistance. The solution to overcome environmental pollution due to ciprofloxacin is degradation by using TiO2 nanoparticles. TiO2 nanoparticles performance is influenced by environment such as light source, pH solvent, duration of lighting and TiO2 nanoparticles mass. The residual levels determination of ciprofloxacin was carried out by using a UV-Vis spectrophotometer. Toxicity test of ciprofloxacin degradation products with TiO2 nanoparticles used Escherichia coli bacteria. Liquid Chromatography Mass Spectrometry (LCMS) was used to determine the type of ciprofloxacin degradation product with TiO2 nanoparticles. The optimum condition for the ciprofloxacin degradation with TiO2 nanoparticles is lighting for 5 hours by using a white mercury UV lamp and 50 mg TiO2 nanoparticles with pH solvent of 5.5. The toxicity of ciprofloxacin degradation product with TiO2 nanoparticles was low. The smallest degradation product identified with m/z was p-fluoraniline (m/z 111). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Sign in / Sign up

Export Citation Format

Share Document