scholarly journals ASSESSMENT OF DIRECT PYROGENIC CARBON EMISSIONS IN RUSSIAN FORESTS FOR 2020 USING REMOTE MONITORING DATA

2021 ◽  
Vol 1 (4) ◽  
pp. 1-7
Author(s):  
D.V. Ershov ◽  
◽  
E.N. Sochilova

The paper presents the results of assessing pyrogenic emissions of carbon compounds in Russian forests for 2020 using remote monitoring methods. The area of forests damaged by fires was 6.5 mln ha, whereas the amount of carbon emissions was 36.5 MtC. Although the total area of damage is higher than the average annual values, the amount of pyrogenic carbon emissions is lower than the average annual ones. In absolute terms, the year corresponds to 2016. We registered an increase in annual carbon emissions from fires since the abnormal 2012. A preliminary analysis of the entire observation period for fires suggests that 2021 may be the next abnormal year after the years of 2003 and 2012 in terms of forest fires and direct pyrogenic carbon emissions into the atmosphere.

2020 ◽  
Vol 4 (4) ◽  
pp. 1-8
Author(s):  
D.V. Ershov ◽  
◽  
E.N. Sochilova

The article presents the results of an assessment of pyrogenic Carbon emissions in the forests of Russia for 2020, carried out using remote monitoring methods. The area of forest damage from fires was 6.5 million hectares, and the amount of Carbon emissions was 36.5 MtC. Although the area of damages in the country as a whole is higher than the average annual values, the scale of pyrogenic carbon emissions is lower than the average annual values and in absolute terms corresponds to 2016. There has been an increase in fire Carbon emissions since 2012. A preliminary analysis of the entire observation period for fires suggests that 2021 may be the next year after 2003 and 2012 an abnormal year in terms of forest fire and the amount of direct fire Carbon emissions into the atmosphere.


2013 ◽  
Vol 22 (6) ◽  
pp. 721 ◽  
Author(s):  
Yoshiaki Goto ◽  
Satoru Suzuki

Emissions from forest fires directly affect the global and regional carbon cycles by increasing atmospheric carbon as well as affecting carbon sequestration by forests. We have estimated the release of total carbon, carbon-based trace gases (CO2, CO, CH4) and non-methane hydrocarbons (NMHC) emitted from forest fires in Japan during a 30-year period from 1979 through 2008. The area burnt varied widely from year to year but has gradually diminished since the 1980s. The mean annual area burnt during the period was 1878 ha. The mean annual estimate of direct carbon emissions from forest fires in Japan was 15.8 Gg C year–1 and ranged between 2.7 and 60.4 Gg C year–1. The mean annual trace gas emissions were 49.4 Gg CO2 year–1, 3.4 Gg CO year–1, 0.15 Gg CH4 year–1 and 0.18 Gg NMHC year–1. Although the carbon emissions varied widely from year to year based on the area burnt, they decreased dramatically from the 1980s onward. The interannual variations in trace gases parallel the total carbon emissions. The direct emissions from forest fires in Japan were substantially lower compared with the mean annual net primary production of Japanese forests or the carbon release in other countries and regions. However, the average annual carbon released per unit area burnt was comparable to that estimated in other regions and rose gradually with the increasing age of plantations.


2021 ◽  
Vol 4 (2) ◽  
pp. 63-67
Author(s):  
Galina A. Ivanova ◽  
Valery A. Ivanov

In connection with global climate change, special attention is paid to the quantitative content of greenhouse gases in the atmosphere. Currently, forest fires are one of the main sources of gas and aerosol emissions into the atmosphere. Based on the conducted experimental studies, data on carbon emissions from fires of different intensity in the pine forests of Siberia were obtained. The most important factors affecting the amount of burned biomass and the amount of carbon emissions are the type and intensity of the fire. High-intensity fires have the greatest impact on the ecosystem and the amount of carbon emissions. With an increase in the number of large high-intensity fires, an increase in pyrogenic carbon emissions into the atmosphere can be expected.


2019 ◽  
Vol 1 (4) ◽  
pp. 28-34
Author(s):  
Rahima I. Ismoilova ◽  
Sodzhida D. Umarova

This paper is about studying the rootstocks for stone fruit breeds (sweet cherry) in condition of Hissar valley in Tajikistan. Each type of rootstock has its own biological characteristics and imposes specific requirements for growing and development, both during reproduction in the mother plantation and during the growth of trees. For example, the root system in sour cherry is more superficial that of wild sweet cherry. Therefore, the care of trees grafted on sour cherry and wild cherry and of mother plantation bushes of these rootstocks cannot be same. Besides, there are very significant differences among the individual groups of rootstocks. Wild cherry, Mahaleb cherry and Lubskaya cherry are used as rootstocks in the conditions of the Hissar Valley in Tajikistan. High specificity of sweet cherry cultivar varieties depends on the rootstocks. Phenological observation were carried out in our experiments during years 2013-2018 in order to study their winter resistance, yield capacity and fruit quality. The same care for root and grafted plants was carried out during the entire observation period. At the same time a certain ratio between the leaf system of the rootstock and the graft was maintained by trimming the crown. As a result of the evolution and selection, we have identified the wild cherry forms which are distinguished by the highest yields. The most valuable cultivar varieties are Napoleon cherry and Bagration cherry. Compotes made of these varieties have received high evaluation in tasting.


2015 ◽  
Vol 29 (9) ◽  
pp. 1549-1566 ◽  
Author(s):  
Jia Yang ◽  
Hanqin Tian ◽  
Bo Tao ◽  
Wei Ren ◽  
Chaoqun Lu ◽  
...  

Due to the recent advancements in the fields of Micro Electromechanical Sensors (MEMS), communication, and operating systems, wireless remote monitoring methods became easy to build and low cost option compared to the conventional methods such as wired cameras and vehicle patrols. Pipeline Monitoring Systems (PMS) benefit the most of such wireless remote monitoring since each pipeline would span for long distances up to hundreds of kilometers. However, precise monitoring requires moving large amounts of data between sensor nodes and base station for processing which require high bandwidth communication protocol. To overcome this problem, In-Situ processing can be practiced by processing the collected data locally at each node instead of the base station. This Paper presents the design and implementation of In-situ pipeline monitoring system for locating damaging activities based on wireless sensor network. The system built upon a WSN of several nodes. Each node contains high computational 1.2GHz Quad-Core ARM Cortex-A53 (64Bit) processor for In-Situ data processing and equipped in 3-axis accelerometer. The proposed system was tested on pipelines in Al-Mussaib gas turbine power plant. During test knocking events are applied at several distances relative to the nodes locations. Data collected at each node are filtered and processed locally in real time in each two adjacent nodes. The results of the estimation is then sent to the supervisor at base-station for display. The results show the proposed system ability to estimate the location of knocking event.


2015 ◽  
Vol 12 (21) ◽  
pp. 17817-17849
Author(s):  
V. M. Santana ◽  
J. G. Alday ◽  
H. Lee ◽  
K. A. Allen ◽  
R. H. Marrs

Abstract. A~present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we model the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north–south, climatic gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads, and annual C losses under different prescribed-burning rotation intervals. Additionally, we assessed the interaction of these parameters with an increasing wildfire return interval. We observed that litter accumulation patterns varied along the latitudinal gradient, with differences between northern (colder and wetter) and southern sites (hotter and drier). The accumulation patterns of the living vegetation dominated by Calluna were determined by site-specific conditions. The optimal prescribed-burning rotation interval for minimizing annual carbon losses also differed between sites: the rotation interval for northern sites was between 30 and 50 years, whereas for southern sites a hump-backed relationship was found with the optimal interval either between 8 to 10 years or between 30 to 50 years. Increasing wildfire frequency interacted with prescribed-burning rotation intervals by both increasing C emissions and modifying the optimum prescribed-burning interval for C minimum emission. This highlights the importance of studying site-specific biomass accumulation patterns with respect to environmental conditions for identifying suitable fire-rotation intervals to minimize C losses.


2015 ◽  
Vol 3 (6) ◽  
pp. 3579-3619
Author(s):  
S. L. Gariano ◽  
O. Petrucci ◽  
F. Guzzetti

Abstract. We exploit a catalogue of 1466 rainfall events with landslides in the 90 year period 1921–2010 to study temporal and geographical variations in the occurrence of landslides in Calabria, Southern Italy. We use daily rainfall records obtained by a network of 318 rain gauges to reconstruct 448 493 rainfall events. Combining the rainfall and the landslide information, we obtain a catalogue of 1466 rainfall events with landslides (REL) in Calabria from 1921 to 2010, where a REL is the occurrence of one or more landslide during or immediately after a rainfall event. We find that the geographical and the temporal distributions of the rainfall-induced landslides have changed in the observation period. The average and the maximum values of the cumulated event rainfall that have resulted in landslides in the recent-most 30 year period 1981–2010 are lower than the values necessary to trigger landslides in previous periods, whereas the duration of the rainfall events that triggered landslides has remained the same. This can be considered evidence of variations in rainfall conditions, but also an increase in the vulnerability of the territory. We further find that the yearly distribution of rainfall-induced landslides has changed in the observation period, analysing the variations in the number of rainfall events with landslides occurred in each month in three 30 year periods. To investigate variations in the impact of REL on the population, we compared the number of REL in each of the 409 municipalities in Calabria, with the size of the population in the municipalities, measured by national Censuses conducted in 1951, 1981, and 2011. For the purpose, we adopted two strategies. The first strategy considered impact as IREL = #REL/P and the second strategy measured impact as RREL = #REL × P, where #REL is the total number of REL in a period, and P is the size of the population in the same period and geographical area. Considering the entire observation period, IREL and RREL have both increased in Calabria. However, considering the changes between the recent period 1981–2010 and the previous period 1951–1980, results are more variegated with a number of municipalities where IREL and RREL have increased, or decreased. Municipalities where IREL has increased are mainly in the mountains, and municipalities where RREL has increased are mainly along the coasts.


2020 ◽  
Vol 73 (4) ◽  
pp. 705-707
Author(s):  
Tetyana V. Zvyagintseva ◽  
Svitlana I. Myronchenko ◽  
Nataliia I. Kytsiuk ◽  
Olga V. Naumova

The aim is to establish the features of morphological and morphometric changes in the skin of guinea pigs in erythemal, early post-erythemal and late post-erythemic periods after local ultraviolet irradiation. Materials and methods: Studies were conducted on 54 albino guinea pigs weighing 400-500 g. Ultraviolet erythema was caused by irradiation in 1 minimum erythemal dose. The control group included intact guinea pigs. After 2, 4 hours, on the 3rd, 8th, 15th, 21st, 28th day, the fragments of the irradiated skin were investigated using histochemical and morphometric methods. Results: After 2, 4 hours after irradiation, dyscirculatory changes in the skin develop. By the 3rd day of the experiment a morphological picture of acute inflammation in the epidermis and dermis develops, apoptotic keratinocytes appear (sunburn cells), which is accompanied by thickening of the epidermis and an increase in the density of fibroblasts. By the 8th day proliferative-hyperplastic and degenerative changes begin to prevail, including dystrophic nature, the thickness of the epidermis and the density of fibroblasts reach a maximum. In the long term, on the 15-28th day, dystrophic changes of the epidermis, dyskeratosis, changes in the number and structure of elastic fibers with an increase in uneven fibrosis, collagenization processes and the development of sclerotic changes, as well as a significant thickening of the epidermis, an increase in the density of fibroblasts are observed. Conclusions: The data obtained indicate pronounced morphofunctional changes in the skin in the zone of local ultraviolet irradiation observed throughout the entire observation period.


2012 ◽  
Vol 9 (4) ◽  
pp. 4587-4631 ◽  
Author(s):  
W. B. Anderson ◽  
B. F. Zaitchik ◽  
C. R. Hain ◽  
M. C. Anderson ◽  
M. T. Yilmaz ◽  
...  

Abstract. Drought in East Africa is a recurring phenomenon with significant humanitarian impacts. Given the steep climatic gradients, topographic contrasts, general data scarcity, and, in places, political instability that characterize the region, there is a need for spatially distributed, remotely derived monitoring systems to inform national and international drought response. At the same time, the very diversity and data scarcity that necessitate remote monitoring also make it difficult to evaluate the reliability of these systems. Here we apply a suite of remote monitoring techniques to characterize the temporal and spatial evolution of the 2010–2011 Horn of Africa drought. Diverse satellite observations allow for evaluation of meteorological, agricultural, and hydrological aspects of drought, each of which is of interest to different stakeholders. Focusing on soil moisture, we apply triple collocation analysis (TCA) to three independent methods for estimating soil moisture anomalies to characterize relative error between products and to provide a basis for objective data merging. The three soil moisture methods evaluated include microwave remote sensing using the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) sensor, thermal remote sensing using the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance algorithm, and physically-based land surface modeling using the Noah land surface model. It was found that the three soil moisture monitoring methods yield similar drought anomaly estimates in areas characterized by extremely low or by moderate vegetation cover, particularly during the below-average 2011 long rainy season. Systematic discrepancies were found, however, in regions of moderately low vegetation cover and high vegetation cover, especially during the failed 2010 short rains. The merged, TCA-weighted soil moisture composite product takes advantage of the relative strengths of each method, as judged by the consistency of anomaly estimates across independent methods. This approach holds potential as a remote soil moisture-based drought monitoring system that is robust across the diverse climatic and ecological zones of East Africa.


Sign in / Sign up

Export Citation Format

Share Document