scholarly journals Estimation of 90Sr content in wood of scots pine based on measurement surface flux density of beta-particles from stem bark

2021 ◽  
Vol 12 (1) ◽  
pp. 48-56
Author(s):  
D. M. Holiaka ◽  
S. E. Levchuk ◽  
Ya. A. Savytska ◽  
O. M. Lesnik ◽  
V. V. Humeniuk ◽  
...  

This paper presents an approach for indirect measuring of 90Sr activity concentration in stem wood of Scots pine`s live trees within the Chernobyl exclusion zone based on values of beta-particles surface flux density from stem bark at a thee height of 1.3 m above the forest floor that obtained by use STORA-TU RKS-01 radiometer-dosimeter under field condition. The similar express-methods often consider in scientific publications so as they allow to obtain probable levels of radiation contamination without taking samples for laboratory measurements. That in turn can be used to optimize sampling or for example in the case of the need to preserve the intact initial state of the biota during long-term in situ or/and in vivo observations. The empirical data for validation of the method have received on 13 experimental sites of artificial (plantation) even-aged stands which consist only of one woody species: Scots pine. The correlation analysis discovered statistical significant relation at p-value=0.05 between arithmetic averages of beta-particles surface flux density from stem bark of pine trees at the forest sites and 90Sr activity concentration in stem wood elements (sap wood, heartwood and all stem wood), and functional dependencies among these parameters are described by a simple linear equation with only one slope parameters (R2 = 0.90–0.96) whose predicted values for sap wood, heartwood, and all stem wood are (± standard deviation) 23.1±8.5, 42.3±10.3, and 26.8±6.8 Bq·cm2·min·(kg·pcs)-1, respectively. Moreover, the influence of biometric indicators of individual trees (diameter, height, age) on this pattern was not detected. However, the average diameter (DBH) of stands has the strongest influence among forest inventory indicators on the value of the 90Sr activity concentration ratio between sap wood and heartwood (r = 0.93), that is, the radial distribution of the studied radionuclide in stem wood of pine trees. The results of these studies should be confirmed by a larger collection of observations for Scots pine given the small sample size for her in this paper. Also, scientists are necessary to include empirical data for other major forest-forming woody species within the research region due to the importance of using express-methods of radioactive contamination levels estimation for the planning and optimization of forest management.

2019 ◽  
Vol 65 (No. 12) ◽  
pp. 461-471
Author(s):  
Viktoriia Lovynska ◽  
Petro Lakyda ◽  
Svitlana Sytnyk ◽  
Ivan Lakyda ◽  
Yuriy Gritzan ◽  
...  

Abstract: The research paper presents the results of the assessment of the annual stem production of Scots pine (Pinus sylvestris L.) and black locust (Robinia pseudoacacia L.) stands within the Northern Steppe of Ukraine. The research team has developed two- and three-factor regression models for assessing the live biomass stocks for the fractions of the wood and bark of the stems of the Scots pine and black locust stands. The paper also presents the dependences of the live biomass of the components of the stems of the stands on their selected biometric parameters. The direct positive correlation between the fractions of the wood, bark, and stem in total with the factors of age, mean diameter, mean height and stand density for both the studied species has been identified. The results include the distribution of the total stem production of the Scots pine and black locust stands by the state forestry enterprises of the Dnipro region. The mean annual stem production of Scots pine is characterised by lower values (stem wood –2.91 t·ha<sup>–1</sup>·yr<sup>–1</sup>, stem bark –0.38 t·ha<sup>–1</sup>·yr<sup>–1</sup>) compared with the investigated species – black locust with the stem wood 4.94 t·ha<sup>–1</sup>·yr<sup>–1</sup> and stem bark 1.70 t·ha<sup>–1</sup>·yr<sup>–1</sup>.


2016 ◽  
Vol 9 (11) ◽  
pp. 5523-5533 ◽  
Author(s):  
Sander van der Laan ◽  
Swagath Manohar ◽  
Alex Vermeulen ◽  
Fred Bosveld ◽  
Harro Meijer ◽  
...  

Abstract. We present a new methodology, which we call Single Pair of Observations Technique with Eddy Covariance (SPOT-EC), to estimate regional-scale surface fluxes of 222Rn from tower-based observations of 222Rn activity concentration, CO2 mole fractions and direct CO2 flux measurements from eddy covariance. For specific events, the regional (222Rn) surface flux is calculated from short-term changes in ambient (222Rn) activity concentration scaled by the ratio of the mean CO2 surface flux for the specific event to the change in its observed mole fraction. The resulting 222Rn surface emissions are integrated in time (between the moment of observation and the last prior background levels) and space (i.e. over the footprint of the observations). The measurement uncertainty obtained is about ±15 % for diurnal events and about ±10 % for longer-term (e.g. seasonal or annual) means. The method does not provide continuous observations, but reliable daily averages can be obtained. We applied our method to in situ observations from two sites in the Netherlands: Cabauw station (CBW) and Lutjewad station (LUT). For LUT, which is an intensive agricultural site, we estimated a mean 222Rn surface flux of (0.29 ± 0.02) atoms cm−2 s−1 with values  > 0.5 atoms cm−2 s−1 to the south and south-east. For CBW we estimated a mean 222Rn surface flux of (0.63 ± 0.04) atoms cm−2 s−1. The highest values were observed to the south-west, where the soil type is mainly river clay. For both stations good agreement was found between our results and those from measurements with soil chambers and two recently published 222Rn soil flux maps for Europe. At both sites, large spatial and temporal variability of 222Rn surface fluxes were observed which would be impractical to measure with a soil chamber. SPOT-EC, therefore, offers an important new tool for estimating regional-scale 222Rn surface fluxes. Practical applications furthermore include calibration of process-based 222Rn soil flux models, validation of atmospheric transport models and performing regional-scale inversions, e.g. of greenhouse gases via the SPOT 222Rn-tracer method.


Author(s):  
Huan Pablo de Souza ◽  
Mauro Valdir Schumacher ◽  
Aline Aparecida Ludvichak ◽  
Dione Richer Momolli ◽  
Claudiney Do Couto Guimarães ◽  
...  

The objective of this study was to quantify the biomass and the macronutrient stock in an experiment of fertilization with Eucalyptus urophylla, planted in arenized soil at 12 months-old, in Rio Grande do Sul, Brazil. The experiment had a completely randomized design with five treatments (T1, T2, T3, T4 and T5) with three replications. The treatments T2, T3, T4 and T5, received increasing doses of triple superphosphate. On the other hand, the T1 treatment was the only one to receive natural phosphate in planting. For the determination of the biomass, fifteen trees were felled and separated in the following components: leaves, branches, stem bark, stem wood and roots. Samples of the components were collected and transported to the laboratory for biomass determination and chemical analysis. The total biomass varied between the treatments, with highest biomass accumulation of 6.83 Mg ha-1 occurring in T5. The T1 presented the highest biomass for roots representing 33.4% of the total biomass. The biomass distribution among the different components in the decreasing order was: roots > stem wood > leaves > branches > stem bark, for all the treatments. The treatment with higher doses of fertilizers (T5) presented the highest amount of nutrient accumulation in the total biomass (131.26 kg ha-1). The concentration and accumulation of nutrients presented the following trend K > N > Ca > Mg > P > S. Analyzing the different components of biomass, the highest amounts of nutrients followed the order: leaves > roots > stem wood > branches > stem bark. Fertilization influenced the biomass production of E. urophylla in arenized soil in the Pampa biome, but without significant differences to date (12 months). The leaves had the highest concentration of macronutrients, with the exception of Ca, which was higher in the bark. The K was the element that presented highest accumulation in whole tree. The plantation of eucalyptus with fertilization management may be an alternative for the economic use of arenized soil.


1981 ◽  
Vol 57 (4) ◽  
pp. 169-173 ◽  
Author(s):  
I. S. Alemdag ◽  
K. W. Horton

Ovendry mass of single trees of trembling aspen, largetooth aspen, and white birch in the Great Lakes — St. Lawrence and Boreal forest regions in Ontario was studied in relation to stem dimensions. Mass equations for tree components based on diameter at breast height outside bark and tree height were developed. Results were found more dependable for stem wood and the whole tree than for stem bark, live branches, and twigs plus leaves. Ovendry mass values were slightly higher than those reported for New York and northern Minnesota.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 41 ◽  
Author(s):  
Bin Yang ◽  
Wenyan Xue ◽  
Shichuan Yu ◽  
Jianyun Zhou ◽  
Wenhui Zhang

We studied the effects of stand age on allocation and equation fitting of aboveground and below-ground biomass in four Quercus acutissima stands (14, 31, 46, and 63 years old) in the Central Loess Plateau of China. The stem wood, stem bark, branch, foliage, and belowground biomass of each of the 20 destructive harvesting trees were quantified. The mean total biomass of each tree was 28.8, 106.8, 380.6, and 603.4 kg/tree in the 14-, 31-, 46-, and 63-year-old stands, respectively. Aboveground biomass accounted for 72.25%, 73.05%, 76.14%, and 80.37% of the total tree biomass in the 14-, 31-, 46-, and 63-year-old stands, respectively, and stem wood was the major component of tree biomass. The proportion of stem (with bark) biomass to total tree biomass increased with stand age while the proportions of branch, foliage, and belowground biomass to total tree biomass decreased with stand age. The ratio of belowground biomass to aboveground biomass decreased from 0.39 in the 14-year-old stand to 0.37, 0.31, and 0.24 in the 31-, 46-, and 63-year-old stands, respectively. Age-specific biomass equations in each stand were developed for stem wood, stem bark, aboveground, and total tree. The inclusion of tree height as a second variable improved the total tree biomass equation fitting for middle-aged (31-year-old and 46-year-old) stands but not young (14 years old) and mature (63 years old) stands. Moreover, biomass conversion and expansion factors (BCEFs) varied with stand age, showing a decreasing trend with increasing stand age. These results indicate that stand age alters the biomass allocation of Q. acutissima and results in age-specific allometric biomass equations and BCEFs. Therefore, to obtain accurate estimates of Q. acutissima forest biomass and carbon stocks, age-specific changes need to be considered.


2007 ◽  
Vol 37 (5) ◽  
pp. 895-906 ◽  
Author(s):  
Nuno António ◽  
Margarida Tomé ◽  
José Tomé ◽  
Paula Soares ◽  
Luís Fontes

The objective of this study was to develop a system of compatible equations to estimate eucalyptus ( Eucalyptus globulus Labill.) tree aboveground biomass and biomass of tree components for forest biomass prediction across regional boundaries. Data came from 441 trees sampled on several sites (99 and 14 plots in planted and coppice regenerated stands, respectively) representative of the eucalyptus expansion area in Portugal. The system of equations, simultaneously fitted using seemingly unrelated regression, was based on the allometric model for the biomass of stem wood, stem bark, leaves, and branches. Total aboveground biomass was expressed as the sum of the biomass of the respective tree components. The study allowed the following conclusions: (i) there is a significant increase in the predictive ability of the models that include height (stem components) or crown length (crown components) as an additional predictor to diameter at 1.30 m; (ii) there is a clear effect of the stage of development of the stand on tree allometry, with a decreasing pattern of the allometric constants; (iii) no effect of stand density, site index or climate on tree allometry was found; and (iv) for practical purposes, the same system of equations can be used for planted and coppice regenerated stands.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 716
Author(s):  
Lina Beniušienė ◽  
Benas Šilinskas ◽  
Ričardas Beniušis ◽  
Marius Aleinikovas ◽  
Edmundas Petrauskas ◽  
...  

Background and Objectives: The aim of this study was to determine the effects of different stand densities and thinning regimes on stem quality parameters, mainly branch characteristics, of Scots pine (Pinus sylvestris L.) trees. The study provides some input to the discussion about Scots pine stem quality responses to different forest management practices in relatively young stands. Materials and Methods: Total tree height, height to the lowest live and dead branch, diameter at breast height (DBH), and diameter of all branches from the whorls located up to 6 m from the ground were measured. The linear regression models to predict branch diameter, as the main parameter for the stem quality assessment, were developed based on stand density and stem parameters. Results and Conclusions: DBH, branch diameter and number of branches up to 6-m stem height were significantly higher in the stands with the lowest density. These stem parameters showed a relatively clear downward trend from the lowest to the highest stand densities. The main identified variables which significantly affected stem quality, were branch diameter and diameter of the thickest branch in the bottom part of the stem, at least up to 3-m stem height. For practical use, the best fitted model was estimated when stand density, DBH, and branch diameter up to 3-m height were included in a single equation. The developed model for branch diameter could be used as a forest management tool for managing stem-wood quality.


1981 ◽  
Vol 11 (1) ◽  
pp. 13-17 ◽  
Author(s):  
M. F. Ker ◽  
G. D. Van Raalte

Equations are given, based on data from 298 balsam fir and 88 white spruce trees in northwestern New Brunswick, for predicting ovendry weight of biomass for balsam fir and white spruce trees. Separate equations are given for each of nine components: stem wood, stem bark, total stem, branches, foliage, total crown, total aboveground weight, roots, and total tree. Independent variables used in the equations include diameter at breast height (dbh), height, crown width, crown length, and indices of basal area, crown area, and crown volume.


2014 ◽  
Vol 7 ◽  
pp. 61-65
Author(s):  
Omar Ali Mondal ◽  
KAMSH Mondal ◽  
Nurul Islam

Antifungal activity of the D. indica (Lam.) Bennet. extractives collected in CHCl3 and methanol were tested against seven pathogenic fungi F. vasinfectum, A. fumigatus, A. niger, A. flavus, Mucor sp., C. albicans and P. notatum at concentrations of 50 and 200 ?g/disc along with a standard Nystatin (50 ?g/disc). The fruit shell extract showed activity index against C. albicans and P. notatum. The leaf and the root bark extracts were responsive on A. fumigatus, C. albicans, P. notatum and F. vasinfectum. For the root wood extract F. vasinfectum, A. fumigatus,, C. albicans were responsive. For the seed, stem bark and stem wood extract showed activity index against A. flavus, C. albicans, A. fumigatus P. notatum and Mucor sp. According to the intensity of activity indices D. indica extracts (CHCl3) could be arranged in a descending order of fruit shell > leaf > root bark > root wood > seed >stem wood> stem bark extract. For the MeOH extracts the fruit shell, leaf, root bark and root wood extracts showed activity indices against A. fumigatus, C. albicans , P. notatum , Mucor sp., F vasinfectum, and A. flavus. In case of the seed, stem bark and stem wood extracts A. flavus, C. albicans, A. fumigatus, P. notatum and Mucor sp. were responsive. According to the intensity of activity indices D. indica extracts (MeOH) could be arranged in a descending order of fruit shell > leaf > root bark > root wood >seed> stem bark > stem wood extract. DOI: http://dx.doi.org/10.3329/jles.v7i0.20122 J. Life Earth Sci., Vol. 7: 61-65, 2012


Sign in / Sign up

Export Citation Format

Share Document