scholarly journals The Effects of ATO on Mitochondria Apoptosis Pathway Genes Expression in APL Cell Line

2016 ◽  
Vol 1 (2) ◽  
pp. 37-42
Author(s):  
Maede Sharifizadeh ◽  
Kimia Davarian ◽  
Mehrdad Hashemi ◽  
Majid Momeni ◽  
Kamran Ali Moghdam ◽  
...  

Purpose and Background: Acute promyelocystic leukemia is the most malignant acute leukemia that leads to death in few weeks. It constitutes 10-15% of acute myelocystic leukemia. Arsenic trioxide, as a single agent factor, is known as the best treatment for acute promyelocystic leukemia, which mainly functions by inducing apoptosis. However, there is no clear image of the mechanism through which apoptosis is induced and how the genes expression is deeply affected. Thus, the present study is an attempt to examine the effect of the agent on expression of the genes dealing with the cancer. Methodology: The study was carried out as an analytical work. To find out about the mechanisms effective on inducing apoptosis, cell line NB4 were cultured with 0.5µM, 1 µM, and 2 µM arsenic trioxide and their RNA was extracted after 12hrs, 24hrs, 28hrs, and 72hrs. Following cDNA synthesis, apoptosis genes expression at mitochondria pathway including caspase 3, Mcl-1, and Bcl-2 were examined using Real-Time PCR. The data was analyzed using t-test and variance analysis in Excel.Findings: It was found that arsenic caused apoptosis was featured with decrease of mRNA expression of Bcl-2 anti-apoptotic. However, expression of caspase 3 and Mcl-1 genes remained unchanged after culturing by arsenic. Conclusion: The results showed that changes in Bcl-2 gene expression can be considered as a mechanism of apoptosis caused by arsenic, while caspase 3 and Mcl-1 genes had no effect on the mechanism.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4449-4449
Author(s):  
Ri Zhang ◽  
Xuhui Zhang ◽  
YaJun Zhi ◽  
ZiLing Zhu ◽  
De Pei Wu

Abstract We aimed to evaluate the effects of arsenic trioxide (ATO, Trisenox) on STI571 (Gleevec, imatinib mesylate)-induced apoptosis of a chronic myelogenous leukemia (CML) cell line, K562 cells. Cell prolifration and colony-forming assays were performed to determine the cytotoxicity of ATO alone and in combination with STI571. Apoptosis was analyzed by morphological changes, apoptosis rate and cell cycles. An Elisa assay was used to detect the levels of cytosolic cytochrome c (cyt c) and caspase-3 in K562 cells exposed to ATO and STI571 at graded concentrations. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was used to assay the transcriptional levels of Bcl-XL and Bcr-Abl genes in K562 cells. Results showed that both the colony-forming assay and cell proliferation assay demonstrated additive to synergistic effects of ATO on STI571-induced apoptosis in K562 cells, a Bcr-Abl positive cell line. Caspase-3 was activated during apoptosis and there was an increase in cytosolic accumulation of cytochrome c. Treatment of K562 cells with STI571 alone led to down-regulation of transcriptional levels of Bcl-XL at 12 hours and Bcr-Abl at 96 hours after drug administration. Treatment with ATO alone only led to reduce the mRNA levels of Bcl-XL, but not Bcr-Abl. Combined treatment with ATO and STI571 down regulated the transcripts of Bcl-XL at 12 hours and Bcr-Abl 72 hours after drug administration. We conclude that ATO enhanced cytotoxic and proapoptotic actions of STI571 could be mediated by the down-regulation of Bcr-Abl and Bcl-XL genes in K562 cells. Therefore ATO in combination with STI571 could be a promising therapy for CML.


Tumor Biology ◽  
2017 ◽  
Vol 39 (11) ◽  
pp. 101042831773145 ◽  
Author(s):  
Fatima Abdelmutaal Ahmed Omer ◽  
Najihah Binti Mohd Hashim ◽  
Mohamed Yousif Ibrahim ◽  
Firouzeh Dehghan ◽  
Maizatulakmal Yahayu ◽  
...  

Xanthones are phytochemical compounds found in a number of fruits and vegetables. Characteristically, they are noted to be made of diverse properties based on their biological, biochemical, and pharmacological actions. Accordingly, the apoptosis mechanisms induced by beta-mangostin, a xanthone compound isolated from Cratoxylum arborescens in the human promyelocytic leukemia cell line (HL60) in vitro, were examined in this study. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was done to estimate the cytotoxicity effect of β-mangostin on the HL60 cell line. Acridine orange/propidium iodide and Hoechst 33342 dyes and Annexin V tests were conducted to detect the apoptosis features. Caspase-3 and caspase-9 activities; reactive oxygen species; real-time polymerase chain reaction for Bcl-2, Bax, caspase-3, and caspase-9 Hsp70 genes; and western blot for p53, cytochrome c, and pro- and cleavage-caspase-3 and caspase-9 were assessed to examine the apoptosis mechanism. Cell-cycle analysis conducted revealed that β-mangostin inhibited the growth of HL60 at 58 µM in 24 h. The administration of β-mangostin with HL60 caused cell morphological changes related to apoptosis which increased the number of early and late apoptotic cells. The β-mangostin-catalyzed apoptosis action through caspase-3, caspase-7, and caspase-9 activation overproduced reactive oxygen species which downregulated the expression of antiapoptotic genes Bcl-2 and HSP70. Conversely, the expression of the apoptotic genes Bax, caspase-3, and caspase-9 were upregulated. Meanwhile, at the protein level, β-mangostin activated the formation of cleaved caspase-3 and caspase-9 and also upregulated the p53. β-mangostin arrested the cell cycle at the G0/G1 phase. Overall, the results for β-mangostin showed an antiproliferative effect in HL60 via stopping the cell cycle at the G0/G1 phase and prompted the intrinsic apoptosis pathway.


2020 ◽  
Vol 16 (3) ◽  
pp. 340-349
Author(s):  
Ebrahim S. Moghadam ◽  
Farhad Saravani ◽  
Ernest Hamel ◽  
Zahra Shahsavari ◽  
Mohsen Alipour ◽  
...  

Objective: Several anti-tubulin agents were introduced for the cancer treatment so far. Despite successes in the treatment of cancer, these agents cause toxic side effects, including peripheral neuropathy. Comparing anti-tubulin agents, indibulin seemed to cause minimal peripheral neuropathy, but its poor aqueous solubility and other potential clinical problems have led to its remaining in a preclinical stage. Methods: Herein, indibulin analogues were synthesized and evaluated for their in vitro anti-cancer activity using MTT assay (on the MCF-7, T47-D, MDA-MB231 and NIH-3T3 cell lines), annexin V/PI staining assay, cell cycle analysis, anti-tubulin assay and caspase 3/7 activation assay. Results: One of the compounds, 4a, showed good anti-proliferative activity against MCF-7 cells (IC50: 7.5 μM) and low toxicity on a normal cell line (IC50 > 100 μM). All of the tested compounds showed lower cytotoxicity on normal cell line in comparison to reference compound, indibulin. In the annexin V/PI staining assay, induction of apoptosis in the MCF-7 cell line was observed. Cell cycle analysis illustrated an increasing proportion of cells in the sub-G-1 phase, consistent with an increasing proportion of apoptotic cells. No increase in G2/M cells was observed, consistent with the absence of anti-tubulin activity. A caspase 3/7 assay protocol showed that apoptosis induction by more potent compounds was due to activation of caspase 3. Conclusion: Newly synthesized compounds exerted acceptable anticancer activity and further investigation of current scaffold would be beneficial.


2020 ◽  
Vol 20 (4) ◽  
pp. 486-494
Author(s):  
Mohamed A. El-Desouky ◽  
Abdelgawad A. Fahmi ◽  
Ibrahim Y. Abdelkader ◽  
Karima M. Nasraldin

Background: Amygdalin (Vitamin B-17) is a naturally occurring vitamin found in the seeds of the fruits of Prunus Rosacea family including apricot, bitter almond, cherry, and peach. Objective: The purpose of this study was to examine the effect of amygdalin with and without zinc on hepatocellular carcinoma (HepG2) cell line. Methods: MTT assay was used to evaluate the cytotoxicity of amygdalin without zinc, amygdalin + 20μmol zinc, and amygdalin + 800μmol zinc on HepG2 cell lines. The cell cycle distribution assay was determined by flow cytometry. Apoptosis was confirmed by Annexin V-FITC/PI staining assay. Moreover, the pathway of apoptosis was determined by the percentage of change in the mean levels of P53, Bcl2, Bax, cytochrome c, and caspase-3. Results: Amygdalin without zinc showed strong anti-HepG2 activity. Furthermore, HepG2 cell lines treatment with amygdalin + 20μmol zinc and amygdalin + 800μmol zinc showed a highly significant apoptotic effect than the effect of amygdalin without zinc. Amygdalin treatment induced cell cycle arrest at G2/M and increased the levels of P53, Bax, cytochrome c, and caspase-3 significantly, while it decreased the level of anti-apoptotic Bcl2. Conclusion: Amygdalin is a natural anti-cancer agent, which can be used for the treatment of hepatocellular carcinoma. It promotes apoptosis via the intrinsic cell death pathway (the mitochondria-initiated pathway) and cell cycle arrest at G/M. The potency of amygdalin in HepG2 treatment increased significantly by the addition of zinc.


Author(s):  
Abdel Qader Al Bawab ◽  
Malek Zihlif ◽  
Yazan Jarrar ◽  
Ahmad Saleh

Background: Hypoxia (deprived oxygen in tissues) may induce molecular and genetic changes in cancer cells. Objective: Investigating the genetic changes of glucose metabolism in breast cancer cell line (MCF7) after exposure to continuous hypoxia (10 and 20 cycles exposure of 72 hours continuously on a weekly basis). Method: Gene expression of MCF7 cells was evaluated using real-time polymerase chain reaction- array method. Furthermore, cell migration and wound healing assays were also applied. Results: It was found that 10 episodes of continuous hypoxia activated Warburg effect in MCF7 cells via the significant up-regulation of genes involved in glycolysis (ANOVA, p value < 0.05). The molecular changes were associated with the ability of MCF7 cells to divide and migrate. Interestingly, after 20 episodes of continuous hypoxia, the expression glycolysis mediated genes has dropped significantly (from 30 to 9 folds). This could be attributed to the adaptive ability of cancer cells. Conclusion: It is concluded that 10 hypoxic episodes increased the survival rate and the aggressiveness of MCF7 cells and induced Warburg effect by up-regulation of the glycolysis mediating genes expression.


Sign in / Sign up

Export Citation Format

Share Document