scholarly journals Sorption Behaviour of Inorganic Material Filled-PDMS Films in Ethanol, Butanol, Acetone and Water

Author(s):  
Enver Can KILIÇ ◽  
Yavuz SALT
Author(s):  
E. Baer

The most advanced macromolecular materials are found in plants and animals, and certainly the connective tissues in mammals are amongst the most advanced macromolecular composites known to mankind. The efficient use of collagen, a fibrous protein, in the design of both soft and hard connective tissues is worthy of comment. Very crudely, in bone collagen serves as a highly efficient binder for the inorganic hydroxyappatite which stiffens the structure. The interactions between the organic fiber of collagen and the inorganic material seem to occur at the nano (scale) level of organization. Epitatic crystallization of the inorganic phase on the fibers has been reported to give a highly anisotropic, stress responsive, structure. Soft connective tissues also have sophisticated oriented hierarchical structures. The collagen fibers are “glued” together by a highly hydrated gel-like proteoglycan matrix. One of the simplest structures of this type is tendon which functions primarily in uniaxial tension as a reinforced elastomeric cable between muscle and bone.


2019 ◽  
Vol 26 (12) ◽  
pp. 2147-2165 ◽  
Author(s):  
Luana Perioli ◽  
Cinzia Pagano ◽  
Maria Rachele Ceccarini

: In recent years inorganic materials are largely present in products intended for health care. Literature gives many examples of inorganic materials used in many healthcare products, mainly in pharmaceutical field. : Silver, zinc oxide, titanium oxide, iron oxide, gold, mesoporous silica, hydrotalcite-like compound and nanoclays are the most common inorganic materials used in nanosized form for different applications in the health field. Generally, these materials are employed to realize formulations for systemic use, often with the aim to perform a specific targeting to the pathological site. The nanometric dimensions are often preferred to obtain the cellular internalization when the target is localized in the intracellular space. : Some materials are frequently used in topical formulations as rheological agents, adsorbents, mattifying agents, physical sunscreen (e.g. zinc oxide, titanium dioxide), and others. : Recent studies highlighted that the use of nanosized inorganic materials can represent a risk for health. The very small dimension (nanometric) until a few years ago represented a fundamental requirement; however, it is currently held responsible for the inorganic material toxicity. This aspect is very important to be considered as actually numerous inorganic materials can be found in many products available in the market, often dedicated to infants and children. These materials are used without taking into account their dimensional properties with increased risk for the user/patient. : This review deals with a deep analysis of current researches documenting the toxicity of nanometric inorganic materials especially those largely used in products available in the market.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1291 ◽  
Author(s):  
Isobel Tibbetts ◽  
George Kostakis

Metal-organic frameworks (MOFs) have found uses in adsorption, catalysis, gas storage and other industrial applications. Metal Biomolecule Frameworks (bioMOFs) represent an overlap between inorganic, material and medicinal sciences, utilising the porous frameworks for biologically relevant purposes. This review details advances in bioMOFs, looking at the synthesis, properties and applications of both bioinspired materials and MOFs used for bioapplications, such as drug delivery, imaging and catalysis, with a focus on examples from the last five years.


2012 ◽  
Vol 44 (1-3) ◽  
pp. 1-6 ◽  
Author(s):  
Wei Ma ◽  
Qiang Wang ◽  
Ren Wang ◽  
Lu Wang
Keyword(s):  

2014 ◽  
Vol 50 (14) ◽  
pp. 1678-1681 ◽  
Author(s):  
Jinjie Qian ◽  
Feilong Jiang ◽  
Linjie Zhang ◽  
Kongzhao Su ◽  
Jie Pan ◽  
...  

A highly porous metal–organic framework structurally consists of three topological kinds of 3-connected 1,3,5-benzenetricarboxylate ligands, Zn2(COO)4, Zn3O(COO)6 and Zn4O(COO)6 SBUs, featuring a new 3,3,3,4,4,6-c hexanodal topology.


2001 ◽  
Vol 676 ◽  
Author(s):  
W. Oelerich ◽  
T. Klassen ◽  
R. Bormann

ABSTRACTHydrogen is the ideal means of energy storage for transportation and conversion of energy in a comprehensive clean-energy concept. However, appropriate storage facilities, both for stationary and for mobile applications, are complicated, because of the very low boiling point of hydrogen (20.4 K at 1 atm) and its low density in the gaseous state (90 g/m3). Furthermore, the storage of hydrogen in liquid or gaseous form imposes safety problems, in particular for mobile applications, e.g. the future zero-emission vehicle. Metal hydrides are a safe alternative for H-storage and, in addition, have a high volumetric energy density that is about 60% higher than that of liquid hydrogen. Mg hydride has a high storage capacity by weight and is therefore favoured for automotive applications. However, so far light metal hydrides have not been considered competitive because of their rather sluggish sorption kinetics. Filling a tank could take several hours. Moreover, the hydrogen desorption temperature of about 300 °C is rather high for most applications. A breakthrough in hydrogen storage technology was achieved by preparing nanocrystalline hydrides using high-energy ball milling. These new materials show very fast aband desorption kinetics within few minutes, thus qualifying lightweight Mg-based hydrides for storage application. In this paper recent detailed results on the sorption behaviour of nanocrystalline Mg and Mg-based alloys are presented. In a following research effort the sorption kinetics of nanocrystalline Mg has been further enhanced by catalyst additions. Furthermore, different transition metals have been added to Mg to achieve a thermodynamic destabilisation of the hydride, thus lowering the desorption temperatures to about 230 °C. The newly developed materials are currently being tested in prototype storage tanks.


1945 ◽  
Vol 23f (6) ◽  
pp. 327-333 ◽  
Author(s):  
Jesse A. Pearce

Sorption of carbon dioxide by milk powder in a closed system at 35 °C. and at approximately 74 cm. of mercury was observed to be greater than 0.4 cc. per gm. after 150 hr., while only 0.012 cc. of nitrogen was absorbed per gm. after 70 hr. The initial sorption of carbon dioxide varied with time according to the equation:[Formula: see text]where s is 100 times the amount sorbed in cc. per gm. at any time, t (min.), and k and m are constants peculiar to the system under investigation. The logarithmic form of this equation was used. Powders with 26, 28, and 30% fat did not differ in behaviour, but sorption curves for powders with only 1% fat had lower [Formula: see text] values and lower [Formula: see text] values than the curves for the high fat levels. Powders with 1% fat sorbed carbon dioxide in an identical manner when exposed to either 100% carbon dioxide or a mixture of 20% carbon dioxide and 80% nitrogen. For whole milk powder, dilution to 80% nitrogen content was effective in reducing the initial sorption rate of carbon dioxide. Great variation was observed in the sorption behaviour of powders from different plants and in powders produced at different time intervals in the same plant. Temperature differences within the range 25° to 40 °C. had no effect on sorption. Palatability and [Formula: see text] correlated to the extent of r =.61.


2011 ◽  
Vol 356-360 ◽  
pp. 537-546
Author(s):  
Yow Loo Au Yoong ◽  
Pei Lay Yap ◽  
Muralithran G. Kutty ◽  
Olaf Timpe ◽  
Malte Behrens ◽  
...  

The use of surface oxidized covellite (CuS), namely mixed phase copper sulphide (CuS and CuSO4) was studied for the removal of mercury from aqueous solution under the effect of various reaction parameters (pH, time, Hg(II) concentration). From batch sorption studies, the equilibrium data revealed that the sorption behaviour of Hg(II) onto mixed phase copper sulphide follows well with Langmuir isotherm and the maximum sorption capacity (Qmax) determined ≈ 400mg Hg(II) /g of sorbent. Meanwhile, all the unreacted and reacted mixed phase copper sulphides were also characterized by Powder XRD, SEM and XPS techniques. The results indicated that the sorption of Hg(II) onto mixed phase copper sulphide occurs initially through the dissolution of surface oxidized CuSO4layer. After that, the surface complexation product formed and sorbed onto the surface of CuS. These outcomes suggest the potential ability of CuS in removing Hg(II) even if the CuS layer is being surrounded by oxidized layer of CuSO4.


Sign in / Sign up

Export Citation Format

Share Document