scholarly journals IN VITRO STUDY OF PHYSICO-CHEMICAL PROPERTIES OF THE «BALANCED SALT SOLUTION − H2O» SYSTEM WITH THE PURPOSE OF DEVELOPMENT OF TREATMENT, REHABILITATION AND PREVENTIVE MEASURES IN OPHTHALMOLOGY

2021 ◽  
Author(s):  
O. Kofanova ◽  
К. Tkachuk ◽  
O. Kofanov ◽  
M. Saveliev ◽  
O. Tverda ◽  
...  

The research is devoted to the in vitro study of the behavior of the model system «irrigation balanced salt solution BSS − H2O» in order to further develop treatment, rehabilitation and prevention measures for patients with ophthalmic diseases. The aim of the investigation is the experimental determination and analysis of physico-chemical properties of irrigated balanced salt solution, the study of its behavior in the aquatic environment to model changes in the characteristics of intraocular fluid and further development of rehabilitation and preventive measures for ophthalmic patients. Materials and Methods. The study used methods of physico-chemical analysis, in particular, densimetry and viscosimetry of model systems containing BSS for intraocular use and double-distilled water in different volume ratios. The density of the system was determined pycnometrically (20.00 0С ± 0.05 0С; 101.3 kPa); the correction for weight loss of bodies in the air has been taken into account. Viscosity was measured under the same conditions with an Ostwald viscometer. Statistical analysis and evaluation of the reliability of the results were performed using such software products as MS Excel 2007, Google Spreadsheets, SPSS Statistics. Results. Approximate mathematical models of the dependences of density and kinematic and dynamic viscosity on the composition of the multicomponent system «BSS – H2O» were obtained with quite high coefficients of determination. Statistical significance and adequacy of model selection were tested by Student's criterion at a significance level of 5 %. To develop therapeutic, prophylactic and rehabilitation measures, mathematical models of kinematic and dynamic viscosity dependences on the density of the «BSS – H2O» system, measured under the same conditions, were built. The models also have high coefficients of determination. Conclusion. The in vitro physico-chemical analysis of the system «BSS – H2O», as well as the obtained approximate mathematical models can be used to predict possible changes in the characteristics of irrigated balanced salt solution during its long stay in the patient's eye.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2998
Author(s):  
Mohammed Nadeem Bijle ◽  
Manikandan Ekambaram ◽  
Edward Lo ◽  
Cynthia Yiu

The in vitro study objectives were to investigate the effect of arginine (Arg) incorporation in a 5% sodium fluoride (NaF) varnish on its physical and chemical properties including F/Arg release. Six experimental formulations were prepared with L-arginine (L-Arg) and L-arginine monohydrochloride at 2%, 4%, and 8% w/v in a 5% NaF varnish, which served as a control. The varnishes were subjected to assessments for adhesion, viscosity, and NaF extraction. Molecular dynamics were simulated to identify post-dynamics total energy for NaF=Arg/Arg>NaF/Arg<NaF concentrations. The Arg/F varnish release profiles were determined in polyacrylic lactate buffer (pH-4.5; 7 days) and artificial saliva (pH-7; 1 h, 24 h, and 12 weeks). Incorporation of L-Arg in NaF varnish significantly influences physical properties ameliorating retention (p < 0.001). L-Arg in NaF varnish institutes the Arg-F complex. Molecular dynamics suggests that NaF>Arg concentration denotes the stabilized environment compared to NaF<Arg (p < 0.001). The 2% Arg-NaF exhibits periodic perennial Arg/F release and shows significantly higher integrated mean F release than NaF (p < 0.001). Incorporating 2% L-arginine in 5% NaF varnish improves its physical properties and renders a stable matrix with enduring higher F/Arg release than control.


2010 ◽  
Vol 15 (23-24) ◽  
pp. 1105-1105
Author(s):  
P. Sánchez-Moreno ◽  
H. Boulaiz ◽  
J.A. Marchal ◽  
J.L. Ortega-Vinuesa ◽  
J.M. Peula García ◽  
...  

2018 ◽  
Vol 34 (4) ◽  
pp. 278-283
Author(s):  
Dimpi Shah ◽  
Prasad Sulkshane ◽  
Rutika Lalwani ◽  
Sagar Pawar ◽  
Tanuja Teni ◽  
...  

2011 ◽  
Vol 26 (2) ◽  
pp. 175-180 ◽  
Author(s):  
Qiuying Zhao ◽  
Dingyong He ◽  
Lidong Zhao ◽  
Xiaoyan Li

2008 ◽  
Vol 33 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Roberto Espinosa ◽  
Roberto Valencia ◽  
Mario Uribe ◽  
Israel Ceja ◽  
Marc Saadia

Purpose: The goal of this in vitro study was to identify the topographical features of the enamel surface deproteinized and etched with phosphoric acid (H3PO4) compared to phosphoric acid alone. Materials and method: Ten extracted lower first and second permanent molars were polished with pumice and water, and then divided into 4 equal buccal sections having similar physical and chemical properties. The enamel surfaces of each group were subjected to the following treatments: Group A: Acid Etching with H3PO4 37% for 15 seconds. Group AH1: Sodium Hypochlorite (NaOCl) 5.25% for 30 seconds followed by Acid Etching with H3PO4 37% for 15 seconds. Group AH2 ; Sodium Hypochlorite (NaOCl) 5.25% for 60 seconds followed by Acid Etching with H3PO4 37% for 15 seconds. Results showed that group AH2 etching technique reached an area of 76.6 mm2 of the total surface, with a 71.8 mm2 (94.47%), type 1 and 2 etching pattern, followed by group AH1 with 55.9 mm2 out of 75.12 mm2 (74.1%), and finally group A with only 36.8 mm2 (48.83%) out of an area of 72.7 mm2. A significant statistical difference (P &lt;0 .05) existed between all groups, leading to the conclusion that enamel deproteinization with 5.25% NaOCl for 1 minute before H3PO4, etching increases the enamel conditioning surface as well as the quality of the etching pattern.


Sign in / Sign up

Export Citation Format

Share Document