scholarly journals Synthesis, characterization and antimicrobial evaluations of mixed ligand complexes of sulphamethaxole and metronidaxole with some transistion metals (Zn, Co, Cu and Fe) in water methanol medium

Author(s):  
Suleiman A. Olagboye ◽  
Blessing John Bamisaye ◽  
Jerome Femi Adesugba

Sulfamethoxazole and metronidazole are antibiotics use for the treatment of various bacterial infections. Their use as ligand is very prominent in formation of metal complexes. The transition metal complexes are synthesized by reaction of Sulfamethoxazole and metronidazole with metals such Mn(II), Cu(II), Fe(II) and Ni(II). The synthesized metal complexes are tested as antibacterial and antifungal. The antimicrobial activity of the complexes displays good potency against some microorganism such as Xanthomonas axonopodis, Streptococcus faecalia, Salmonella entrica, Claribacter michiganense, Xanthomonas phaseolin for bacteria and S.roofisii, M.phonoides, C.lindimuthianum for the fungi, it is revealed that all copper complexes show stronger antibacterial activity than the free drugs. The spectroscopic properties of the complexes were investigated using UV/visible and FT-IR which show metal-charge from 3d to 3s transition in which the transition state shows that they are octahedral geometry and their coordination site respectively. Their percentage yield was moderately high and producible. The complexes synthesized have higher inhibitory activities than the free ligand. The drug resistance in microbes is resulting in the incompetence of available drugs to care for the infections. The thermal analysis shows that the complexes are stable.

2010 ◽  
Vol 4 (2) ◽  
pp. 37-45
Author(s):  
Matheel D. Al-Sabti ◽  
Ahmed A. H. Al-Amiery ◽  
Thorria R. Marzoog ◽  
Yasmien K. Al-Majedy

This study involves the chemical synthesis of the novel ligand 5-(2-diphenylphosphino) phenyl-1,2-dihydro-1,2,4-triazole-3-thione (DPDTT) by the reaction of 2-diphenylphosphino benzoic acid with absolute ethanol that yield ethyl 2-diphenylphosphino benzoate and by cyclization of this compound with thiosemicarbazide, DPDTT will be produced. The chelating complexes of this ligand with Cr(III), Co(II), Ni(II), Cu(II) and Cd(II) were also prepared and studied. The new complexes were characterized by FT-IR, UV/visible spectra, and room temperature magnetic susceptibility. The stability for the prepared complexes was also measured using the density function theory and it was found that the cadmium complex is the most stable and the chromium complex is the least stable. Free ligand and its metal complexes have been tested in vitro against a number of microorganisms, like gram positive bacteria Staphylococcus aureus and gram negative bacteria E. coli, Proteus vulgaris, Pseudomonas and Klebsiella in order to assess their antimicrobial properties. All complexes showed considerable activity against all the studied bacteria.


2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Sulekh Chandra ◽  
Smriti Raizada ◽  
Monika Tyagi ◽  
Archana Gautam

A series of metal complexes of Cu(II) and Ni(II) having the general composition[M(L)X2]with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Morteza Montazerozohori ◽  
Kimia Nozarian ◽  
Hamid Reza Ebrahimi

Synthesis of zinc(II)/cadmium(II)/mercury(II) thiocyanate and azide complexes of a new bidentate Schiff-base ligand (L) with general formula of MLX2(M = Zn(II), Cd(II), and Hg(II)) in ethanol solution at room temperature is reported. The ligand and metal complexes were characterized by using ultraviolet-visible (UV-visible), Fourier transform infrared (FT-IR),1H- and13C-NMR spectroscopy and physical characterization, CHN analysis, and molar conductivity.1H- and13C-NMR spectra have been studied in DMSO-d6. The reasonable shifts of FT-IR and NMR spectral signals of the complexes with respect to the free ligand confirm well coordination of Schiff-base ligand and anions in an inner sphere coordination space. The conductivity measurements as well as spectral data indicated that the complexes are nonelectrolyte. Theoretical optimization on the structure of ligand and its complexes was performed at the Becke’s three-parameter hybrid functional (B3) with the nonlocal correlation of Lee-Yang-Parr (LYP) level of theory with double-zeta valence (LANL2DZ) basis set using GAUSSIAN 03 suite of program, and then some theoretical structural parameters such as bond lengths, bond angles, and torsion angles were obtained. Finally, electrochemical behavior of ligand and its complexes was investigated. Cyclic voltammograms of metal complexes showed considerable changes with respect to free ligand.


2009 ◽  
Vol 7 (3) ◽  
pp. 429-438 ◽  
Author(s):  
Anife Ahmedova ◽  
Vasil Atanasov ◽  
Petja Marinova ◽  
Neyko Stoyanov ◽  
Mariana Mitewa

AbstractNew 2-acyl-1,3-indandione derivatives, compounds 1–4, were obtained by condensation of 2-acetyl-1,3-indandione with benzaldehyde, thiophene-2-aldehyde, thiophene-3-aldehyde and furane-2-aldehyde, respectively. The structures of the newly synthesized 2-substituted 1,3-indandiones were characterized by means of spectroscopic methods (FT-IR, 1H and 13C NMR, UV-Vis and MS). Based on the obtained results it is suggested that the compounds exist in the exocyclic enolic form. Mass spectral fragmentation paths are also proposed. In order to verify the possibility for tautomerization processes of the newly synthesized compounds their absorption spectra were recorded in various solvents. Furthermore, the complexation properties of the compounds with metal(II) ions were also studied. A series of non-charged complexes with Cu(II), Cd(II), Zn(II), Co(II) and Ni(II) was isolated and analyzed by elemental analyses and IR. The paramagnetic Cu(II) complexes were studied by EPR and distorted, flattened tetrahedral structures are predicted. The other metal complexes show the presence of water molecules, most probably coordinated to the metal ion, thus forming octahedral geometry. Ultimately, the studied properties of the newly synthesized compounds, 1–4, suggest that they may find application as extracting agents for metal ions, rather than as optical sensors.


2020 ◽  
Vol 13 (2) ◽  
pp. 29-37
Author(s):  
Anilkumar Ambala ◽  
Ch. Abraham Lincoln

A series of novel (E)-2-((Tetrazolo[1,5-a]quinolin-4-ylmethylene)amino)phenol Cu(II), Co(II), Ni(II), Zn(II) and Mn (II) metal complexes have been synthesized 1:1 metal to ligand ratio, and these complexes were characterized by using analytical data such as FT-IR, UV-visible, Mass spectroscopy, SEM, EDX, TGA and magnetic moment measurements. The ligand and all the metal complexes were tested in vitro antimicrobial activity and DNA cleavage studies.


2019 ◽  
Vol 31 (11) ◽  
pp. 2430-2438 ◽  
Author(s):  
Vian Yamin Jirjees ◽  
Veyan Taher Suleman ◽  
Abbas Ali Salih Al-Hamdani ◽  
Suzan Duraid Ahmed

A new Schiff base [1-((2-(1H-indol-3-yl)ethylimino)methyl)naphthalene-2-ol] (HL) has been synthesized by condensing (2-hydroxy-1-naphthaldehyde) with (2-(1H-indol-3-yl)ethylamine). In turn, its transition metal complexes were prepared having the general formula; [Pt(IV)Cl2(L)2], [Re(V)Cl2(L)2]Cl and [Pd(L)2], 2K[M(II)Cl2(L)2] where M(II) = Co, Ni, Cu] are reported. Ligand as well as metal complexes are characterized by spectroscopic techniques such as FT-IR, UV-visible, 13C & 1H NMR, mass, elemental analysis. The results suggested that the ligand behaves like a bidentate ligand for all the synthesized complexes. On the other hand, theoretical studies of the ligand as well its metal complexes were conducted at gas phase using HyperChem 8.0. These metal complexes exhibited good antibacterial activity.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
C. Mallikarjunaswamy ◽  
D. G. Bhadregowda ◽  
L. Mallesha

Pyrimidine salts such as 2-methyl-5-nitro-phenyl-(4-pyridin-3-yl-pyrimidin-2-yl)-amine (1) and 4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-yl-amino)-phenyl-amine (2) with chloranilic and picric acids were synthesized, and theirin vitroantibacterial and antifungal activities were evaluated. The synthesized compounds were characterized by elemental analyses, UV-visible, FT-IR, and1H NMR spectral studies. Compound2aexhibited good inhibition towards antimicrobial activity compared to the other compounds.


2007 ◽  
Vol 4 (1) ◽  
pp. 39-45
Author(s):  
B. Basavaraju ◽  
H. S. Bhojya Naik ◽  
M. C. Prabhakara

The synthesis and characterisation of title complexes of the ligand Methylquinolino[3,2-b][1,5]benzodiazepine (MQBD) and Methyl-quinolino[3,2-b][1,5]benzoxazepine (MQBO) are reported. The complexes have been characterized by elemental analysis, molar conductance, magnetic studies, IR,1H NMR and UV-visible studies. They have the stoichiometry [ML2Cl2] where M=Co(II)/Ni(II), L=MQBD/MQBO and [MLCl2] where M=Zn(II)/Cd(II), L=MQBD/MQBO. The antibacterial and antifungal activity of the metal complexes has been investigated.


Author(s):  
Grzegorz Świderski ◽  
Ryszard Łaźny ◽  
Michał Sienkiewicz ◽  
Monika Kalinowska ◽  
Renata Świsłocka ◽  
...  

: Dacarbazine, DAC, 5-(3,3-dimethyltriazeno)imidazol-4-carboxamideis is an imidazole-carboxamide derivative, that is structurally related to purines. DAC belongs to the triazene compounds, which are a group of alkylating agents with antitumour and mutagenic properties. DAC is a non-cell cycle specific drug, active on all phases of cellular cycle. In the frame of this work the 3d-metal complexes (cobalt and copper) with dacarbazine were synthesized. Their spectroscopic properties by the use of FT-IR, FT-Raman and 1HNMR were studied. The structures of dacarbazine and its complexes with copper(II) and cobalt(II) were calculated using DFT methods. The effect of metals on the electronic charge distribution of dacarbazine was discussed on the basis of calculated NBO atomic charges. The reactivity of metal complexes in relation to ligand alone was estimated on the basis of calculated energy of HOMO and LUMO orbitals. The aromaticity of imidazole ring in dacarbazine and the complexes was compared (on the basis of calculated geometric indices of aromaticity). Thermal stability of the investigated 3d-metal complexes with dacarbazine and the products of their thermal decomposition were analyzed.


2020 ◽  
Vol 36 (6) ◽  
pp. 1119-1119
Author(s):  
N. Rama Jyothi ◽  
N.A. Mohamed Farook ◽  
Jaya Madhuri ◽  
K. Gowthami

In Coordination chemistry metal chelating agents has a vital role, among them thiosemicarbazones occupies an important place due to their a range of applications in different fields, such as analytical and biological. In the literature we can find many thiosemicarbazones which has a wide range of applications both in pharmacy and chemical fields. But still there is a scope is there to synthesize new thiosemicarbazone ligands and their metal complexes due to their utility is still there in modern chemistry also. In this present study we synthesized the copper(II) complexes of 9H-Carbazole-3-carbaldehyde-4-phenylthiosemicarbazone, 10-hexyl-10-H-phenothiazine-3-carbaldehyde-4-phenylthiosemicarbazone and 2-thiophenecarboxalde-hyde-4-methylthiosemicarbazone and these complexes are characterized with FT-IR, XRD analysis and thermal stabilities of the both ligands and complexes are compared with thermogravimetric analysis studies. Finally the antibacterial activities of both chelating agents and their metal complexes are tested with two Gram-positive bacterial stains, such as Bacillus subtilis, Staphylococcus aureus and two Gram-negative bacterial stains, Pseudomonas aeruginosa, Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document