scholarly journals Wilms tumor 1 gene, CD97, and the emerging biogenetic profile of glioblastoma

2014 ◽  
Vol 37 (6) ◽  
pp. E14 ◽  
Author(s):  
Aravind Somasundaram ◽  
Nathan Ardanowski ◽  
Charles F. Opalak ◽  
Helen L. Fillmore ◽  
Archana Chidambaram ◽  
...  

Glioblastoma multiforme (GBM) is the most common type of primary brain tumor, and current treatment regimens are only marginally effective. One of the most vexing and malignant aspects of GBM is its pervasive infiltration into surrounding brain tissue. This review describes the role of the Wilms tumor 1 gene (WT1) and its relationship to GBM. WT1 has several alternative splicing products, one of which, the KTS+ variant, has been demonstrated to be involved in the transcriptional activation of a variety of oncogenes as well as the inhibition of tumor suppressor genes. Further, this paper will examine the relationship of WT1 with CD97, a gene that codes for an epidermal growth factor receptor family member, an adhesion G-protein–coupled receptor, thought to promote tumor invasiveness and migration. The authors suggest that further research into WT1 and CD97 will allow clinicians to begin to deal more effectively with the infiltrative behavior displayed by GBM and design new therapies that target this deadly disease.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii29-ii29
Author(s):  
Erin Smithberger ◽  
Abigail Shelton ◽  
Madison Butler ◽  
Allie Stamper ◽  
Ryan Bash ◽  
...  

Abstract Glioblastoma (GBM) is an aggressive primary brain tumor with poor survival and limited treatment options. However, it is an attractive candidate for precision therapeutic approaches due to the frequency of amplification and/or activating mutations in the epidermal growth factor receptor (EGFR) gene and the availability of several brain penetrant second- and third-generation EGFR tyrosine kinase inhibitors (TKI). We used comprehensive molecular profiling of a panel of genetically engineered mouse astrocyte models to examine whether mutational profiles, particularly EGFR and PTEN status, could be used to identify kinases upregulated in specific mutational backgrounds. Using RNA-seq and multiplex inhibitor bead/mass spectrometry (MIB-MS) to analyze the kinase transcriptomes and proteomes, respectively, we have identified several potential targets for combination therapy. Overexpression of wild type EGFR in immortalized, Cdkn2a-/- astrocytes resulted in mild rewiring of the GBM kinome. Only 5 kinases aside from EGFR itself were overexpressed on either the transcript or protein levels. One overexpressed kinase, Hck, has been shown to be involved in cell survival, proliferation, adhesion, and migration. In contrast, overexpression of EGFRvIII, a constitutively active, extracellular domain truncation mutant of EGFR, resulted in significant alteration of the GBM kinome – 81 kinases showed differential expression, with 27 upregulated. One potentially attractive target among these was Cdk6, a drug-targetable, prognostically significant cyclin-dependent kinase implicated in proliferation, migration, and invasion. Finally, overexpression of EGFRvIII in cells lacking Pten dysregulated 46 kinases, including 15 upregulated. One particularly interesting target in these cells was Ddr2, a tyrosine kinase involved in migration, invasion, and extracellular matrix remodeling. We conclude that Hck, Cdk6, and Ddr2 represent attractive targets for therapeutic intervention in their relevant genetic contexts. These findings also suggest that molecular diagnostics for EGFR and PTEN status may be useful in guiding development of rational, EGFR TKI-centric drug combinations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zhang ◽  
Zhaohui Zhong ◽  
Mei Li ◽  
Jingyi Chen ◽  
Tingru Lin ◽  
...  

AbstractAbnormally expressed and/or phosphorylated Abelson interactor 1 (ABI1) participates in the metastasis and progression of colorectal cancer (CRC). ABI1 presents as at least 12 transcript variants (TSVs) by mRNA alternative splicing, but it is unknown which of them is involved in CRC metastasis and prognosis. Here, we firstly identified ABI1-TSV-11 as a key TSV affecting the metastasis and prognosis of left-sided colorectal cancer (LsCC) and its elevated expression is related to lymph node metastasis and shorter overall survival (OS) in LsCC by analyzing data from The Cancer Genome Atlas and TSVdb. Secondly, ABI1-TSV-11 overexpression promoted LoVo and SW480 cells adhesion and migration in vitro, and accelerated LoVo and SW480 cells lung metastasis in vivo. Finally, mechanism investigations revealed that ABI1-isoform-11 interacted with epidermal growth factor receptor pathway substrate 8 (ESP8) and regulated actin dynamics to affect LoVo and SW480 cells biological behaviors. Taken together, our data demonstrated that ABI1-TSV-11 plays an oncogenic role in LsCC, it is an independent risk factor of prognosis and may be a potential molecular marker and therapeutic target in LsCC.


2006 ◽  
Vol 281 (42) ◽  
pp. 31930-31939
Author(s):  
Karin M. Kirschner ◽  
Nicole Wagner ◽  
Kay-Dietrich Wagner ◽  
Sven Wellmann ◽  
Holger Scholz

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


2015 ◽  
Vol 123 (4) ◽  
pp. 989-997 ◽  
Author(s):  
Keiichi Sakai ◽  
Shigetaka Shimodaira ◽  
Shinya Maejima ◽  
Nobuyuki Udagawa ◽  
Kenji Sano ◽  
...  

OBJECT Dendritic cell (DC)-based vaccination is considered a potentially effective therapy against advanced cancer. The authors conducted a Phase I study to investigate the safety and immunomonitoring of Wilms’ tumor 1 (WT1)-pulsed DC vaccination therapy for patients with relapsed malignant glioma. METHODS WT1-pulsed and/or autologous tumor lysate-pulsed DC vaccination therapy was performed in patients with relapsed malignant gliomas. Approximately 1 × 107 to 2 × 107 pulsed DCs loaded with WT1 peptide antigen and/or tumor lysate were intradermally injected into the axillary areas with OK-432, a streptococcal preparation, at 2-week intervals for at least 5–7 sessions (1 course) during an individual chemotherapy regimen. RESULTS Ten patients (3 men, 7 women; age range 24–64 years [median 39 years]) with the following tumors were enrolled: glioblastoma (6), anaplastic astrocytoma (2), anaplastic oligoastrocytoma (1), and anaplastic oligodendroglioma (1). Modified WT1 peptide–pulsed DC vaccine was administered to 7 patients, tumor lysate-pulsed DC vaccine to 2 patients, and both tumor lysate–pulsed and WT1-pulsed DC vaccine to 1 patient. The clinical response was stable disease in 5 patients with WT1-pulsed DC vaccination. In 2 of 5 patients with stable disease, neurological findings improved, and MR images showed tumor shrinkage. No serious adverse events occurred except Grade 1–2 erythema at the injection sites. WT1 tetramer analysis detected WT1-reactive cytotoxic T cells after vaccination in patients treated with WT1-pulsed therapy. Positivity for skin reaction at the injection sites was 80% (8 of 10 patients) after the first session, and positivity remained for these 8 patients after the final session. CONCLUSIONS This study of WT1-pulsed DC vaccination therapy demonstrated safety, immunogenicity, and feasibility in the management of relapsed malignant gliomas.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3142
Author(s):  
Alissa Groenendijk ◽  
Filippo Spreafico ◽  
Ronald R. de Krijger ◽  
Jarno Drost ◽  
Jesper Brok ◽  
...  

In high-income countries, the overall survival of children with Wilms tumors (WT) is ~90%. However, overall, 15% of patients experience tumor recurrence. The adverse prognostic factors currently used for risk stratification (advanced stage, high risk histology, and combined loss of heterozygosity at 1p and 16q in chemotherapy-naïve WTs) are present in only one third of these cases, and the significance of these factors is prone to change with advancing knowledge and improved treatment regimens. Therefore, we present a comprehensive, updated overview of the published prognostic variables for WT recurrence, ranging from patient-, tumor- and treatment-related characteristics to geographic and socioeconomic factors. Improved first-line treatment regimens based on clinicopathological characteristics and advancing knowledge on copy number variations unveil the importance of further investigating the significance of biological markers for WT recurrence in international collaborations.


Sign in / Sign up

Export Citation Format

Share Document