scholarly journals A review of leading COVID-19 vaccines, the quest for immune protection, and its key challenges. Part 3: Covid-19 vaccines – Key challenges and translational science

2021 ◽  
Author(s):  
Johan Hartshorne ◽  
Pierre Johannes Truter de Villiers

Rationale• Developing and deploying safe and effective COVID-19 vaccines are faced with many challenges and unanswered questions.• Massive amounts of heterogenic scientific data are being generated that are needed rapidly to advance vaccine development, protect people and restore normality. • The purpose of Part 3 of this four-part series is to review the scientific considerations related to key challenges associated with COVID-19 vaccines and immune protection with the focus of making this data more meaningful and open for clinicians.Key points• The primary immunogen (antigen) required to induce neutralising antibodies (humoral) and T cell (cellular) immune responses is the S-protein fragment of SARS-CoV-2. • Currently, the evidence is firmly pointing towards neutralising antibodies, being more critical for protection.• Long-term protective or durable immune memory is driven by virus-specific T cell and B cell responses (adaptive immunity).• Circulating antibody titres are not predictive of T cell immune memory.• Durable immune memory is a crucial factor to sustain herd immunity.• Adjuvants are added to certain vaccines to provoke a more robust and durable immune response.• Adjuvants that provoke TH1-biased immune responses are preferred. • 90% of adults are seropositive for 'common cold' CoV strains.• There is a cross-reactivity between specific T cell of SARS-CoV-2 and 'common cold' CoV's.• Prior infection with 'common cold' can play a potentially protective role.• Seropositive individuals present with a rapid and higher antibody immune response after a single dose with an mRNA vaccine.• Vaccine-induced immune responses resulting in non-neutralising antibodies, low antibody titres, and abnormal T cell responses (TH2- biased) are potential risks for serious enhanced disease events but unlikely events.• Vaccine strategies aimed at inducing high titres on neutralising antibodies and TH1- biased immune responses reduce the risk of serious adverse events.• Emerging variants of concern are extremely infectious, highly transmissible and threatens the protective efficacy of current vaccines.Public health implications• A rapid global vaccination campaign combined with standard mitigation measures to stop transmission is the best defence against the emergence of further SARS-CoV-2 variants and the safest way to attain herd immunity.• Booster immunisations may be required to promote or improve the durability and strength of vaccine immunity.

2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


2020 ◽  
Author(s):  
Jianmin Zuo ◽  
Alex Dowell ◽  
Hayden Pearce ◽  
Kriti Verma ◽  
Heather Long ◽  
...  

Abstract The immune response to SARS-CoV-2 is critical in both controlling primary infection and preventing re-infection. However, there is concern that immune responses following natural infection may not be sustained and that this may predispose to recurrent infection. We analysed the magnitude and phenotype of the SARS-CoV-2 cellular immune response in 100 donors at six months following primary infection and related this to the profile of antibody level against spike, nucleoprotein and RBD over the previous six months. T-cell immune responses to SARS-CoV-2 were present by ELISPOT or ICS analysis in all donors and are characterised by predominant CD4+ T cell responses with strong IL-2 cytokine expression. Median T-cell responses were 50% higher in donors who had experienced an initial symptomatic infection indicating that the severity of primary infection establishes a ‘setpoint’ for cellular immunity that lasts for at least 6 months. The T-cell responses to both spike and nucleoprotein/membrane proteins were strongly correlated with the peak antibody level against each protein. The rate of decline in antibody level varied between individuals and higher levels of nucleoprotein-specific T cells were associated with preservation of NP-specific antibody level although no such correlation was observed in relation to spike-specific responses. In conclusion, our data are reassuring that functional SARS-CoV-2-specific T-cell responses are retained at six months following infection although the magnitude of this response is related to the clinical features of primary infection.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 21032-21032
Author(s):  
K. N. Heller ◽  
P. G. Steinherz ◽  
C. S. Portlock ◽  
C. Münz

21032 Background: Epstein-Barr virus (EBV) asymptomatically establishes persistent infections in more than 90% of the adult population. However, due to effective immune control, only a minority of infected carriers develops spontaneous EBV-associated lymphomas. Since EBV nuclear antigen-1 (EBNA1) is the only protein expressed in all proliferating EBV infected cells we hypothesize that EBNA1 specific immune response is critical in preventing EBV-positive lymphomas. Methods: After informed consent, peripheral blood from healthy volunteers and lymphoma patients (prior to therapy- no evidence of cytopenia) were stimulated (ex vivo) with overlapping peptides covering the immunogenic EBNA1 (aa400–641) sequence. Frequency of EBNA1-specific T-cells were assessed by intracellular cytokine staining and flow cytometric proliferation assays. Cytokine pattern, surface marker phenotype and functional reactivity against EBV specific and control antigens were analyzed. Results: Patient and volunteer immune responses to control antigens and other viruses were assessed and statistically indistinguishable. EBNA1 specific CD4+ T cell responses were detected among 18 of 20 healthy carriers, and among 10 of 16 patients with EBV-negative lymphoma (relative to healthy volunteers p=0.145 via paired student T test). None of the patients with EBV-positive lymphomas (n=8) had a detectable EBNA1-specific CD4+ T-cell response (p<0.003 relative to healthy volunteers and patients with EBV-negative lymphomas). Conclusions: Healthy volunteers and patients with EBV-negative lymphoma have statistically similar EBNA1-specific CD4+ T cell responses. Although patients with EBV-positive lymphoma have intact immune responses to common viruses and antigens, they selectively lack an EBNA1-specific CD4+ T cell response. An intact EBNA1 specific immune response among patients with EBV-negaitve lymphoma implies that lymphoma is not a cause of a selective immune deficiency. On the contrary, these findings suggest that EBNA1-specific CD4+ T cells are critical in the prevention of EBV mediated lymphomas, and a defect in EBNA1 specific immunity may leave EBV carriers suseptible to EBV-positive lymphomas. EBNA1- specific CD4+ T cell function may be a new target for therapies of EBV-associated malignancies. No significant financial relationships to disclose.


2003 ◽  
Vol 10 (4) ◽  
pp. 637-642 ◽  
Author(s):  
C. M. Ausiello ◽  
R. Lande ◽  
P. Stefanelli ◽  
C. Fazio ◽  
G. Fedele ◽  
...  

ABSTRACT The relative value of antibodies and/or T-cell immune responses to Bordetella pertussis antigens in the immunity induced by acellular pertussis (aP) vaccines is still an open issue, probably due to the incomplete knowledge on the mechanisms of protective immunity to pertussis. The relevance of T-cell immune responses in protection from pertussis has been demonstrated in murine and human models of infection; thus, in this study, the ability of different vaccine preparations of three component (pertussis toxin, filamentous hemagglutinin, and pertactin) aP vaccines to induce T-cell responses was investigated in mice. All vaccine preparations examined passed the immunogenicity control test, based on antibody titer assessment, according to European Pharmacopoeia standards, and protected mice from B. pertussis intranasal challenge, but not all preparations were able to prime T cells to pertussis toxin, the specific B. pertussis antigen. In particular, one vaccine preparation was unable to induce proliferation and gamma interferon (IFN-γ) production while the other two gave borderline results. The evaluation of T-cell responses to pertussis toxin antigen may provide information on the protective immunity induced by aP vaccines in animal models. Considering the critical role of the axis interleukin-12-IFN-γ for protection from pertussis, our results suggest that testing the induction of a key protective cytokine such as IFN-γ could be an additional tool for the evaluation of the immune response induced by aP vaccines.


2021 ◽  
Vol 12 ◽  
Author(s):  
Loïc Vivien Bocard ◽  
Andrew Robert Kick ◽  
Corinne Hug ◽  
Heidi Erika Lisa Lischer ◽  
Tobias Käser ◽  
...  

This study was initiated to better understand the nature of innate immune responses and the relatively weak and delayed immune response against porcine reproductive and respiratory syndrome virus (PRRSV). Following modified live virus (MLV) vaccination or infection with two PRRSV-2 strains, we analyzed the transcriptome of peripheral blood mononuclear cells collected before and at three and seven days after vaccination or infection. We used blood transcriptional modules (BTMs)-based gene set enrichment analyses. BTMs related to innate immune processes were upregulated by PRRSV-2 strains but downregulated by MLV. In contrast, BTMs related to adaptive immune responses, in particular T cells and cell cycle, were downregulated by PRRSV-2 but upregulated by MLV. In addition, we found differences between the PRRSV strains. Only the more virulent strain induced a strong platelet activation, dendritic cell activation, interferon type I and plasma cell responses. We also calculated the correlations of BTM with the neutralizing antibody and the T-cell responses. Early downregulation (day 0–3) of dendritic cell and B-cell BTM correlated to both CD4 and CD8 T-cell responses. Furthermore, a late (day 3–7) upregulation of interferon type I modules strongly correlated to helper and regulatory T-cell responses, while inflammatory BTM upregulation correlated more to CD8 T-cell responses. BTM related to T cells had positive correlations at three days but negative associations at seven days post-infection. Taken together, this work contributes to resolve the complexity of the innate and adaptive immune responses against PRRSV and indicates a fundamentally different immune response to the less immunogenic MLV compared to field strains which induced robust adaptive immune responses. The identified correlates of T-cell responses will facilitate a rational approach to improve the immunogenicity of MLV.


Author(s):  
Xianmin Fan ◽  
Yue Zhang ◽  
Renhui Ouyang ◽  
Bo Luo ◽  
Lizhu Li ◽  
...  

Cysticercus cellulosae (C. cellulosae) excretes and secretes antigens during the parasitic process to regulate the host immune response; however, resulting immune response and cytokine production in the host during infection still remains unclear. We used C. cellulosae crude antigens (CAs) as controls to explore the effect of excretory secretory antigens (ESAs) on T-cell immune responses in piglets. C. cellulosae ESAs induced imbalanced CD4+/CD8+ T-cell proportions, increased the CD4+Foxp3+ and CD8+Foxp3+ T-cell frequencies, and induced lymphocytes to produce interleukin-10, which was mainly attributed to CD4+ and CD4−CD8− T cells. The ESAs also induced Th2-type immune responses. The results showed that the ability of C. cellulosae to escape the host immune attacks and establish a persistent infection may be related to host immune response regulation by the ESAs.


2021 ◽  
Author(s):  
Yiru Long ◽  
Jianhua Sun ◽  
Tingting Liu ◽  
Feng Tang ◽  
Xinxin Zhang ◽  
...  

AbstractSafe, economical and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to achieve adequate herd immunity and halt the pandemic. We have constructed a novel SARS-CoV-2 vaccine, CoVac501, which is a self-adjuvanting peptide vaccine conjugated with Toll-like receptor 7 (TLR7) agonists. The vaccine contains two immunodominant peptides screened from receptor-binding domain (RBD) and is fully chemically synthesized. And the vaccine has optimized nanoemulsion formulation, outstanding stability and safety. In non-human primates (NHPs), CoVac501 elicited high and persistent titers of RBD-specific and protective neutralizing antibodies (NAbs), which were also effective to RBD mutations. CoVac501 was found to elicit the increase of memory T cells, antigen-specific CD8+ T cell responses and Th1-biased CD4+ T cell immune responses in NHPs. More importantly, the sera from the immunized NHPs can prevent infection of live SARS-CoV-2 in vitro.One-Sentence SummaryA novel SARS-CoV-2 vaccine we developed, CoVac501, which is a fully chemically synthesized and self-adjuvanting peptides conjugated with TLR7 agonists, can induce high-efficient humoral and cellular immune responses against SARS-CoV-2.


2020 ◽  
Author(s):  
Stine SF Nielsen ◽  
Line K Vibholm ◽  
Ida Monrad ◽  
Rikke Olesen ◽  
Giacomo S Frattari ◽  
...  

AbstractThe SARS-CoV-2 pandemic currently prevails worldwide. To understand the immunological signature of SARS-CoV-2 infections and aid the search for treatments and vaccines, comprehensive characterization of adaptive immune responses towards SARS-CoV-2 is needed. We investigated the breadth and potency of antibody-, and T-cell immune responses, in 203 recovered SARS-CoV-2 infected patients who presented with asymptomatic to severe infections. We report very broad serological profiles with cross-reactivity to other human coronaviruses. Further, >99% had SARS-CoV-2 epitope specific antibodies, with SARS-CoV-2 neutralization and spike-ACE2 receptor interaction blocking observed in 95% of individuals. A significant positive correlation between spike-ACE2 blocking antibody titers and neutralization potency was observed. SARS-CoV-2 specific CD8+ T-cell responses were clear and quantifiable in 90% of HLA-A2+ individuals. The viral surface spike protein was identified as the dominant target for both neutralizing antibodies and CD8+ T cell responses. Overall, the majority of patients had robust adaptive immune responses, regardless of disease severity.Author summarySARS-CoV-2 can cause severe and deadly infections. However, the immunological understanding of this viral infection is limited. Currently, several vaccines are being developed to help limit transmission and prevent the current pandemic. However, basic understanding of the adaptive immune response developed during SARS-CoV-2 infections is needed to inform further vaccine development and to understand the protective properties of the developed immune response. We investigated, the adaptive immune response developed during SARS-CoV-2 infections in recovered patients experiencing a full spectrum of disease severity, from asymptomatic infections to severe cases requiring hospitalization. We used a novel multiplex serological platform, cell-based neutralization assays and dextramer flow cytometry assays to characterize a broad and robust humoral and cellular immune response towards SARS-CoV-2. We found that the vast majority of recovered individuals have clear detectable and functional SARS-CoV-2 spike specific adaptive immune responses, despite diverse disease severities. The detection of both a humoral and cellular functional spike specific immune response in the vast majority of the individuals, irrespective of asymptomatic manifestations, supports vaccine designs currently underway, and encourages further exploration of whether primary infections provide protection to reinfection.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A513-A513
Author(s):  
Martin Steinbuck ◽  
Peter DeMuth ◽  
Lochana Seenappa ◽  
Christopher Haqq ◽  
Aniela Jakubowski ◽  
...  

BackgroundThe SARS-CoV-2 pandemic’s public health, economic, and social impacts mandate urgent development of effective vaccines to contain or eradicate infection. To that end, we evaluated a novel amphiphile (AMP) vaccine adjuvant, AMP-CpG, composed of diacyl lipid-modified CpG, admixed with the SARS-CoV-2 Spike-2 receptor binding domain (Spike RBD) protein for immunization (ELI 005) in two mouse models. AMP immunogens are efficiently delivered to lymph nodes, where innate and adaptive immune responses are generated.MethodsFemale, 6 to 8-week-old C57BL/6J and BALB/c mice and 37-week-old C57BL/6J mice received two or more doses of benchmark (alum or CpG) or AMP-modified vaccines, comprised of Spike RBD protein and AMP-CpG adjuvant, subcutaneously injected into the tail base in two-week intervals. Antigen was dose spared to determine if AMP-CpG would maintain the immune response. Cellular immune responses were determined via ELISpot analysis of IFNγ production by splenocytes, intracellular cytokine staining of peripheral blood and lung-resident T-cells, and flowcytometric bead array analysis of Th1/2/17 cytokines. Humoral immune responses were determined via blood serum ELISAs to determine sera antibody binding titers, and pseudoviral neutralization assays for comparison to human convalescent serum.ResultsCompared to alum, AMP immunization induced 29-fold higher antigen-specific T cells which produced multiple Th1 cytokines and trafficked into lung parenchyma. Antibody responses favored Th1 isotypes (IgG2bc, IgG3) and potently neutralized Spike-2-ACE2 receptor binding, with titers >100-fold higher than the natural immune response from convalescent COVID-19 patients; responses were maintained despite 10-fold dose-reduction in Spike antigen. Both cellular and humoral immune responses were preserved in aged mice.ConclusionsELI-005 exhibits the qualities of an optimal SARS-CoV-2 vaccine, which should (1) induce robust and durable CD8+ and CD4+ T cell responses, (2) elicit high magnitude neutralizing antibodies, (3) produce Th1 bias in the elicited antibody and T cell responses, (4) potentially expand pre-existing cross-reactive T cells, (5) enable dose-sparing of required immunogens to improve the speed and cost of broad vaccination campaigns, and (6) be efficacious in elderly populations. These advantages merit clinical translation to SARS-CoV-2 and other protein subunit vaccines.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3798-3798 ◽  
Author(s):  
Iris Bigalke ◽  
Yngvar Fløisand ◽  
Guri Solum ◽  
Kirsti Hønnåshagen ◽  
Marianne Lundby ◽  
...  

Abstract AML is frequently diagnosed in elderly patients, with a median age of 69. Many older patients cannot tolerate intensive chemotherapy and/or stem cell transplantation, making curative treatment difficult and rates of early relapse high. Immunotherapy with dendritic cell (DC) vaccines after chemotherapy was shown by others to provide clinical benefit to some AML patients (van Tendeloo et al. 2010). Here we report results in four AML patients receiving DC vaccines targeting the antigens Wilm's tumor-1 (WT-1) and preferentially expressed antigen in melanoma (PRAME), applied in compassionate use, employing new generation monocyte-derived fast DCs, matured with a cocktail containing the TLR7/8 ligand R848. The mature DCs show high expression of CD83, strong up-regulation of HLA-DR and co-stimulatory molecules, down-regulation of CD14 and polarized release of IL-12p70, with no or low IL-10 secretion, upon T cell encounter. After informed consent and hematopoietic recovery from chemotherapy, mononuclear cells were collected by apheresis and mature DC vaccines were prepared to separately express full length mRNA encoding the two target antigens (Subklewe et al. Cancer Immunol. Immunother. 2014). DCs were administered intradermally, once weekly for 4 wks, at wk6 and then on a monthly basis. Blood and bone marrow (BM) samples were collected throughout treatment. Minimal residual disease (MRD) was measured in BM and blood by quantitative PCR of WT-1 expression and BM was monitored by morphology. Table 1 summarizes the salient features of the patients, treatment parameters, MRD monitoring and initial immune response assessment. DTH reactions were detected in all patients challenged with DCs at wk6. Immune responses of CD4 and CD8 T cells demonstrating intracellular interferon gamma (IFNg) expression were assessed by flow cytometry of PBL stimulated overnight with peptides spanning WT-1, PRAME, and hTERT and survivin as vaccine-unrelated antigens. Responses were scored positive when two-fold or greater frequencies of IFNg-expressing T cells were found compared to unstimulated controls. Patient (Pt.)CU030 and Pt.CU031 showed CD4 and CD8 responses to different test antigens. Pt.CU030 displayed strong and persistent CD8 responses to PRAME and a surprising increase in hTERT reactivity, potentially representing epitope spreading. The pt. continues to receive monthly vaccination and displays a low fluctuating WT-1 PCR signal in BM but no signal is seen in blood at wk61 after start of vaccination. Pt.CU031 displayed WT-1-specific immune responses until wk37 when responses decreased and WT-1 PCR signals increased in BM. The pt. developed Bell's palsy and immune responses were no longer detected after cortisone therapy. WT-1 signals then increased strongly in BM, accompanied by an increase of blasts. Pt. CU033 had no significant T cell response during 9 months (m) of vaccination. WT-1 signals now increase slowly in BM but relapse cannot be confirmed by morphology and WT-1 PCR remains negative in blood. Pt.CU040 has only received DC vaccines for 5 m, remains in morphological remission and immune response and MRD monitoring are ongoing. These results show that fast, TLR-polarized DCs induce or enhance specific T cell responses in elderly and undertreated AML patients, with individual strengths and specificities. Preliminary assessments suggest that changes in MRD are related to increase or loss of vaccine-associated immune responses. Table 1. Characteristics of AML patients receiving DC vaccines Patient CU030 CU031 CU033 CU040 Age 57 50 68 73 Sex f m f f AML Classification M4 M2 M1 M1 Risk Classification intermed intermed intermed good Chemotherapy cycles Induction/Consolidation 2/0 2/4 2/0 2/0 Time between chemo-therapy and vaccination 5 m 8 m 3 m 7 m Months of vaccination as of (08/2015) 16 m 10 m 9 m 5 m DTH responses at w6 toWT-1/PRAME DC challenge pos/pos pos/pos pos/pos pos/pos IFNg-positive T cell responses to overlapping peptides of WT-1, PRAME, hTERT, and Survivin Strong and persistent CD8 responses to PRAME and hTERT Early CD4 & CD8 responses to WT-1; decrease at wk37; full loss after cortisone therapy No significant responses detected up to wk33 To be done after acquisition of further samples MRD (WT-1 PCR) in BM/blood fluctuating low /neg rapid increase after cortisone /pos slow increase /neg ongoing BM morphology (most recent test) neg pos neg neg Time since completion of chemotherapy 21 m 18 m 12 m 12 m Disclosures Eckl: Medigene Immunotherapies GmbH: Employment. Schendel:Medigene Immunotherapies GmbH: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: for DC maturation cocktail. Kvalheim:Medigene Immunotherapies GmbH: Other: Scientific collaboration.


Sign in / Sign up

Export Citation Format

Share Document