scholarly journals Identification of genotypes and marker validation for grain filling rate and grain filling duration in wheat under conservation agriculture

Author(s):  
Rajbir Yadav ◽  
Ashish Kumar ◽  
Soma Gupta ◽  
K. B. Gaikwad ◽  
Neelu Jain ◽  
...  

Increase in ambient temperature beyond threshold level as predicted by global climate models may impact wheat production severely in India if it happens during grain filling stage. Grain filling rate (GFR) and grain filling duration (GFD) are critical determinant for final grain yield realization in wheat. GFR in wheat follow a slow-fast-slow pattern, however, wheat genotypes may have quantitative differences in this pattern. Ninty six diverse wheat genotypes were evaluated for GFR in two phases i.e. during first 20 days after anthesis and thereafter up to physiological maturity and grain filling duration. Out of 96 genotypes, six namely, G958, G1203, G1219, G1275, HD2985 and HDCSW18 were having high GFR during initial phase while seven genotypes viz., G949, G1081, G1124, G1159, G1204, HD3059 and HD2380 exhibited high GFR at terminal phase of grain development. Genotypes, G1263, G1207, G1423 along with some of the released varieties, HD2285, WH1105 and HD2864 were having higher GFD. Correlation between the two traits were not significant (r = -0.17959). ANOVA for GFR and GFD indicated highly significant variability among the genotypes. QTLs identified for GFR and GFD elsewhere were validated in Indian breeding material under conservation agriculture. Two SSR markers viz., XCfd42 and Xwmc500 explained about 6% and 1% variation for GFR, respectively. Similarly, already reported marker Xwmc382 was able to explain about 8% of variation for GFD in the Indian breeding material. It has been postulated from the study that by crossing the genotypes with high GFR in different grain growth stages like HD CSW 18 and HD 3059, genotypes with consistently high grain filling rate throughout the grain growth stage can be developed. The markers XCfd42 and Xwmc 382 can be further explored for fine mapping to integrate in the breeding programme for selection.

Author(s):  
Chubasenla Aochen ◽  
Pravin Prakash

Fifty wheat genotypes were evaluated at the seedling stage of growth, for genetic variation in cellular thermotolerance by cell membrane thermostability (CMS) and Triphenyl tetrazolium choride (TTC) assays. A subset of eight genotypes was also evaluated at the anthesis stage using the same assays. Large and significant differences existed among wheat genotypes for TTC and CMS at the seedling and anthesis stages. Average thermotolerance declined from seedling to anthesis stage. Thermotolerance was well-correlated between growth stages among the eight genotypes for both CMS (r=0.95; p= 0.01) and TTC (r=0.92; p= 0.01). The correlation between TTC and CMS among the eight genotypes at seedling and anthesis stages was significant (r=0.95; p=0.01 and r =0.93; p= 0.01, respectively). The effect of heat stress on wheat genotypes selected on the basis of TTC and CMS thermotolerance ratings were evaluated. 1000-grain weight, grain filling duration (GFD) and grain filling rate (GFR) reduced under heat stress. The heat susceptibility index (S) revealed K-65 and Yangmai6 to be susceptible and NW-1014 and DBW-14 to be moderately tolerant to heat stress. GFR and 1000-grain weight were found to have highly significant positive correlation with CMS and TTC ratings at both seedling and anthesis stages.


Crop Science ◽  
2013 ◽  
Vol 53 (6) ◽  
pp. 2295-2303 ◽  
Author(s):  
Edmore Gasura ◽  
Peter Setimela ◽  
Richard Edema ◽  
Paul T. Gibson ◽  
Patrick Okori ◽  
...  

2015 ◽  
Vol 47 (4) ◽  
pp. 49-63 ◽  
Author(s):  
A.A. Khan ◽  
M.R. Kabir

Abstract Twenty five spring wheat genotypes were evaluated for terminal heat stress tolerance in field environments in the Agro Ecological Zone-11 of Bangladesh, during 2009-2010 cropping season. The experiments were conducted at Wheat Research Centre, Bangladesh Agricultural Research Institute, using randomized block design with three replicates under non-stress (optimum sowing) and stress (late sowing) conditions. Seven selection indices for stress tolerance including mean productivity (MP), geometric mean productivity (GMP), tolerance (TOL), yield index (YI), yield stability index (YSI), stress tolerance index (STI) and stress susceptibility index (SSI) were calculated based on grain yield of wheat under optimum and late sowing conditions. The results revealed significant variations due to genotypes for all characters in two sowing conditions. Principal component analysis revealed that the first PCA explained 0.64 of the variation with MP, GMP, YI and STI. Using MP, GMP, YI and STI, the genotypes G-05 and G-22 were found to be the best genotypes with relatively high yield and suitable for both optimum and late heat stressed conditions. The indices SSI, YSI and TOL could be useful parameters in discriminating the tolerant genotypes (G-12, G-13, and G-14) that might be recommended for heat stressed conditions. It is also concluded from the present studies that biomass, grain filling rate and spikes number m-2 are suitable for selecting the best genotypes under optimum and late sowing conditions because these parameters are highly correlated with MP, GMP, YI and STI. However, high ground cover with long pre heading stage and having high grain filling rate would made a genotype tolerant to late heat to attain a high grain yield in wheat.


2017 ◽  
Vol 5 (2) ◽  
pp. 188-193 ◽  
Author(s):  
Ankur Poudel ◽  
Dhruba Bahadur Thapa ◽  
Manoj Sapkota

High temperature stress adversely affects plant physiological processes; limiting plant growth and reducing grain yield. Heat stress is often encountered due to late sowing of wheat in winter. Fifty wheat genotypes were studied for days to maturity, thousand kernel weight, grain filling duration, grain filling rate, and SPAD reading in alpha lattice design at Agriculture and Forestry University at Rampur, Chitwan, Nepal with the objective to identify superior heat stress tolerant varieties after clustering them based on their response to heat stress. All the genotypes were clustered using reduction in thousand kernel weight, heat susceptibility index for thousand kernel weight, heat susceptibility index for grain filling duration, area under SPAD retreat curve, maturity duration under normal condition, maturity duration at late sown condition, grain filling rate under normal condition and grain filling rate at late sown condition as variables and dendogram was prepared. UPGMA revealed that these genotypes formed five distinct clusters. The resistant genotypes and susceptible genotypes formed different clusters. The member of cluster 3 was found to be tolerant to terminal heat stress where as members of cluster 2 were found most susceptible to terminal heat stress. From this study genotype BAJ #1/SUP152 was found most tolerant to terminal heat stress. The genotypes belonging to superior cluster could be considered very useful in developing heat tolerant variety and other breeding activities.Int. J. Appl. Sci. Biotechnol. Vol 5(2): 188-193


Genetika ◽  
2004 ◽  
Vol 36 (3) ◽  
pp. 229-235
Author(s):  
Milka Brdar ◽  
Marija Kraljevic-Balalic ◽  
Borislav Kobiljski

Grain yields of wheat (Triticum aestivitm L) are influenced partly by final grain dry weight, which is largely determined by the rate and duration of the grain filling process. A study was undertaken to compare the observed final grain dry weight of five groups of wheat genotypes differing in earliness (extra early, medium early, medium late, late and a control group of high yielding NS cultivars) with the observed duration and average and maximum rates of grain filling in two different environments. Correlation coefficients were used to determine which grain filling parameter had more influence on final grain dry weight, in an environment common for our country (2002), final grain dry weight was strongly positively correlated with the average and maximum rates and strongly negatively correlated with the duration of grain filling. The medium late and control groups had the highest final grain dry weights. Correlations between final grain dry weight and the duration and average rate of grain filling were positive in an unfavorable environment (2001). The NS cultivars and extra early genotypes had the highest final grain dry-weights. The rate and duration of grain filling are usually negatively correlated. The influence of grain filling parameters on final grain dry weight is not the same in different environments, so the ability of the genotype to compensate for the low grain filling rate with grain fill prolongation in unfavorable environments might be more important. The observed average grain filling rate is probably more important as a parameter for describing these processes than the maximum one.


Genetika ◽  
2006 ◽  
Vol 38 (3) ◽  
pp. 175-181 ◽  
Author(s):  
Milka Brdar ◽  
Borislav Kobiljski ◽  
Marija Balalic-Kraljevic

Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the final grain dry weight, rate and duration of grain filling were important parameters in differentiating among cultivars grain filling curves. The yield was positively correlated with number of grains/m2, grain weight and grain filling rate, and negatively correlated with grain filling duration. Correlation between grain weight and rate of grain filling was positive. Grain filling duration was negatively correlated with grain filling rate and number of grains/m2. The highest yield on three year average had medium late Mironovska 808, by the highest grain weight and grain filling rate and optimal number of grains/2 and grain filling duration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-qing Wang ◽  
Xiao-Fang Yu ◽  
Ju-Lin Gao ◽  
Da-Ling Ma ◽  
Liang Li ◽  
...  

AbstractGrain filling is the key stage for achieving high grain yield. Subsoiling tillage, as an effective conservation tillage, has been widely used in the maize planting region of China. This study was conducted to explore the effects of subsoiling on the grain filling characteristics of maize varieties of different eras. Five typical maize varieties from different eras (1970s, 1980s, 1990s, 2000s and 2010s) were used as experimental materials with two tillage modalities (rotation tillage and subsoiling tillage). The characteristic parameters (Tmax: the time when the maximum grouting rate was reached, Wmax: the grain weight at the maximum filling rate, Rmax: the maximum grouting rate, P: the active grouting stage, Gmean: the average grouting rate; A: the ultimate growth mass) and rate parameters (T1: the grain filling duration of the gradually increasing stage, V1: the average grain filling rate of the gradually increasing stage, T2: he grain filling duration of the rapidly increasing stage, V2: the average grain filling rate of the rapidly increasing stage, T3: the grain filling duration of the slowly increasing stage, V3: the average grain filling rate of the slowly increasing stage) of grain filling of two tillage modalities were analyzed and compared. The results showed that the filling parameters closely correlated with the 100-kernel weight were significantly different among varieties from different eras, and the grain filling parameters of the 2010s variety were better than those of the other varieties, the P and Tmax prolonged by 4.06–19.25%, 5.88–27.53% respectively, the Rmax and Gmean improved by 5.68–14.81%, 4.76–12.82% and the Wmax increased by 10.14–32.58%. Moreover, the 2010s variety helped the V2 and V3 increase by 6.49–13.89%, 4.55–15.00%. In compared with rotation tillage, the grain yield of maize varieties from different eras increased by 4.28–7.15% under the subsoiling condition, while the 100-kernel weight increased by 3.53–5.06%. Under the same contrast conditions, subsoiling improved the Rmax, Wmax and Gmean by 1.23–4.86%, 4.01–5.96%, 0.25–2.50% respectively, delayed the Tmax by 4.04–5.80% and extended the P by 1.19–4.03%. These differences were major reasons for the significant increases in 100-kernel dry weight under the subsoiling condition. Moreover, subsoiling enhanced the V2 and V3 by 0.70–4.29%, 0.00–2.44%. The duration of each filling stage and filling rate of maize varieties from different eras showed different responses to subsoiling. Under the subsoiling condition, the average filling rate of the 1970–2010s varieties were improved by 1.18%, 0.34%, 0.57%, 1.57% and 2.69%. In the rapidly increasing period, the grain filling rate parameters of the 2010s variety were more sensitive to subsoiling than those of the other varieties. The rapidly increasing and slowly increasing period are the key period of grain filling. Since the 2010s variety and subsoiling all improve the grain filling rate parameters of two periods, we suggest that should select the variety with higher grain filling rate in the rapidly increasing and slowly increasing period, and combine subsoiling measures to improve the grain filling characteristic parameters of maize in production, so as to achieve the purpose of increasing 100 grain weight and yield.


2019 ◽  
Vol 13 ((04) 2019) ◽  
pp. 616-621
Author(s):  
Nasser S. AL Ghumaiz ◽  
Mohamed I Motawei ◽  
Abdulrahman A Al Soqeer

Low-fertility soil is considered a major challenge for growing wheat (Triticum aestivum) in organic systems. The objective of this study was to identify spring wheat genotype(s) adapted to growing in organic systems with low-fertility soil compared with conventional systems in the central region of Saudi Arabia. Organic and conventional trials were established during the 2010, 2011 and 2012 growing seasons in the arid environment of central region of Saudi Arabia. Both trails were seeded in a sandy loam soil. Eight bread wheat genotypes were evaluated for the following parameters: grain and straw yields, grain-filling rate (GFR), days to heading (DTH), days to maturity (DTM), number of kernels per spike and 1000-kernel weight. The experiment was a randomized complete block design (RCBD) with four replications. The findings showed that there were significant differences in grain and straw yields between the two systems and among genotypes. The Egyptian genotypes 'Sids 12' and Early-line produced the highest grain yields (7.8 tons ha-1) in the conventional system, whereas in the organic system, Yocora Rojo (control genotype) and Early-line produced the highest yields (5.8 and 5.9 tons ha-1, respectively). Grain and straw yields were higher in 2011 and 2012 growing seasons compared to 2010. Early-line and ICARDA genotypes (IC8 and IC17) had the highest grain-filling rate, whereas the Australian genotypes (P5 and P3) and the local genotype 'Sama' had the lowest grain-filling rate. The genotype Early-line had the shortest time to heading and maturity in both systems. Therefore, Early-line and Yocora Rojo are promising bread wheat genotypes for organic production systems in low-fertility soil.


2013 ◽  
Vol 38 (9) ◽  
pp. 1698-1709
Author(s):  
Tian-Jun XU ◽  
Zhi-Qiang DONG ◽  
Jiao GAO ◽  
Chuan-Xiao CHEN ◽  
Liu JIAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document