scholarly journals The Impacts of Climate Change on Agricultural Production and Sustainable Agriculture of Smallholder Farmers in Vietnam

2021 ◽  
Vol 4 (2) ◽  
pp. 1100-1107
Author(s):  
Nguyen Van Phu

Climate change is one of the greatest threats to human beings, and agriculture is one of the fields that is most negatively affected by climate change. Farmers around the world and global food supply chains are impacted by the more extreme weather phenomena and increased damage of diseases and pests caused by climate change. Today, almost all agricultural enterprises and farms consider climate change a serious long-term risk for their production. Agricultural land systems can produce significant greenhouse gases (GHGs) by the conversion of forests to crop- and animal lands, and also through the weak management of crops and livestock. Around the world, cultivation and cattle production accounts for 25% of global GHG emissions (Javeline, ‎2014). However, under suitable conditions, agriculture can create environmental conditions that can help minimize pollution and the negative effects of climate change including carbon absorption by green plants in forests, and fields for watershed protection and biodiversity conservation. Sustainable agriculture helps farmers to adapt, maintain, and improve productivity without applying harmful techniques. In turn, this allows farms to manage and mitigate climate-related risks in their supply chains. The Sustainable Agriculture Network (SAN) has found new ways to incorporate smart climate cultivation methods into all farming practices to help farms and enterprises carry out agriculture sustainably.

2021 ◽  
Vol 13 (4) ◽  
pp. 1795
Author(s):  
Pedro Dorta Antequera ◽  
Jaime Díaz Pacheco ◽  
Abel López Díez ◽  
Celia Bethencourt Herrera

Many small islands base their economy on tourism. This activity, based to a large extent on the movement of millions of people by air transport, depends on the use of fossil fuels and, therefore, generates a large amount of greenhouse gas (GHG) emissions. In this work, these emissions are evaluated by means of various carbon calculators, taking the Canary Islands as an example, which is one of the most highly developed tourist archipelagos in the world. The result is that more than 6.4 million tonnes (Mt) of CO2 are produced per year exclusively due to the massive transport of tourists over an average distance of more than 3000 km. The relative weight of these emissions is of such magnitude that they are equivalent to more than 50% of the total amount produced by the socioeconomic activity of the archipelago. Although, individually, it is travelers from Russia and Nordic countries who generate the highest carbon footprint due to their greater traveling distance, the British and German tourists account for the greatest weight in the total, with two-thirds of emissions.


2021 ◽  
Author(s):  
Sylvia Vetter ◽  
Michael Martin ◽  
Pete Smith

<p>Reducing greenhouse gas (GHG) emissions in to the atmosphere to limit global warming is the big challenge of the coming decades. The focus lies on negative emission technologies to remove GHGs from the atmosphere from different sectors. Agriculture produces around a quarter of all the anthropogenic GHGs globally (including land use change and afforestation). Reducing these net emissions can be achieved through techniques that increase the soil organic carbon (SOC) stocks. These techniques include improved management practices in agriculture and grassland systems, which increase the organic carbon (C) input or reduce soil disturbances. The C sequestration potential differs among soils depending on climate, soil properties and management, with the highest potential for poor soils (SOC stock farthest from saturation).</p><p>Modelling can be used to estimate the technical potential to sequester C of agricultural land under different mitigation practices for the next decades under different climate scenarios. The ECOSSE model was developed to simulate soil C dynamics and GHG emissions in mineral and organic soils. A spatial version of the model (GlobalECOSSE) was adapted to simulate agricultural soils around the world to calculate the SOC change under changing management and climate.</p><p>Practices like different tillage management, crop rotations and residue incorporation showed regional differences and the importance of adapting mitigation practices under an increased changing climate. A fast adoption of practices that increase SOC has its own challenges, as the potential to sequester C is high until the soil reached a new C equilibrium. Therefore, the potential to use soil C sequestration to reduce overall GHG emissions is limited. The results showed a high potential to sequester C until 2050 but much lower rates in the second half of the century, highlighting the importance of using soil C sequestration in the coming decades to reach net zero by 2050.</p>


2021 ◽  
Author(s):  
Darija Bilandžija ◽  
Marija Galić ◽  
Željka Zgorelec

<p>In order to mitigate climate change and reduce the anthropogenic greenhouse gas (GHG) emissions, the Kyoto protocol has been adopted in 1997 and the Paris Agreement entered into force in 2016. The Paris Agreement have ratified 190 out of 197 Parties of the United Nations Framework Convention on Climate Change (UNFCCC) and Croatia is one of them as well. Each Party has obliged regularly to submit the national inventory report (NIR) providing the information on the national anthropogenic GHG emissions by sources and removals by sinks to the UNFCCC. Reporting under the NIR is divided into six categories / sectors, and one of them is land use, land use change and forestry (LULUCF) sector, where an issue of uncertainty estimates on carbon emissions and removals occurs. As soil respiration represents the second-largest terrestrial carbon flux, the national studies on soil respiration can reduce the uncertainty and improve the estimation of country-level carbon fluxes. Due to the omission of national data, the members of the University of Zagreb Faculty of Agriculture, Department of General Agronomy have started to study soil respiration rates in 2012, and since then many different studies on soil respiration under different agricultural land uses (i.e. annual crops, energy crop and vineyard), management practices (i.e. tillage and fertilization) and climate conditions (i.e. continental and mediterranean) in Croatia have been conducted. The obtained site specific results on field measurements of soil carbon dioxide concentrations by <em>in situ</em> closed static chamber method will be presented in this paper.</p>


2021 ◽  
Vol 748 (1) ◽  
pp. 012039
Author(s):  
Tualar Simarmata ◽  
M Khais Proyoga ◽  
Diyan Herdiyantoro ◽  
Mieke R Setiawati ◽  
Kustiwa Adinata ◽  
...  

Abstract Climate change (CC) is real and threatens the livelihood of most smallholder farmers who reside along the coastal area. The CC causes the rise of temperature (0.2-0.3°C/decade) and sea level (SRL = 5 mm/year), drought and floods to occur more frequently, the change of rainfall intensity and pattern and shifting of planting season and leads to the decreasing of crop yield or yield loss. Most of the paddy soil has been exhausted and degraded. About 50% of the rice field along the coastline is effected by high salinity and causes significant yield losses. The research was aimed to summarize the results of the system of organic based aerobic rice intensification (known as IPATBO) and of two climate filed school (CFS) in Cinganjeng and Rawapu that situated along the coastline of Pangandaran and Cilacap. Both IPATBO and CFS have adopted the strategy of climate-resilient sustainable agriculture (CRSA) for restoring the soil health and increasing rice productivity, and as well as to empower the farmer community. The implementation of IPATBO (2010-2020) in the different areas has increased the soil health, fertilizers, and water efficiency (reduce inorganic by 25-50%, and water by 30-40%) and increased rice productivity by at least 25-50%. Both CFS in Ciganjeng and Rawaapu were able to improve soil fertility, increase rice productivity, and farmer capacity. This result concludes the agro-ecological based CRSA and CFS can be adopted for the increasing the resilient of agricultural practices and farmers in adapting to climate change


Author(s):  
Debbie Hopkins ◽  
James Higham

Since the turn of the 21st Century, the world has experienced unprecedented economic, political, social and environmental transformation. The ‘inconvenient truth’ of climate change is now undeniable; rising temperatures and the increasing frequency and intensity of extreme events have resulted in the loss of lives, livelihoods and habitats as well as straining economies. Increasingly mobile lives are often dependent on high carbon modes of transport, representing a substantial contribution to global greenhouse gas (GHG) emissions, the underlying cause of anthropogenic climate change. With growing demand and rising emissions, the transport sector has a critical role to play in achieving GHG emissions reductions, and stabilising the global climate. Low Carbon Mobility Transitions draws interdisciplinary insights on transport and mobilities, as a vast and complex socio-technical system. It presents 15 chapters and 6 shorter ‘case studies’ covering a diversity of themes and geographic contexts across three thematic sections: People and Place, Structures in Transition, and Innovations for Low Carbon Mobility. The three sections are highly interrelated, and with overlapping, complementing, and challenging themes. The contributions offer critical, often neglected insights into low carbon mobility transitions across the world. In doing so, Low Carbon Mobility Transitions sheds light on the place- and context-specific nature of mobility in a climate constrained world.


2007 ◽  
Vol 11 (3) ◽  
pp. 255-283 ◽  
Author(s):  
Timothy Leduc

AbstractThis paper examines the powerful intersection of Christian fundamentalism and fossil fuel interests in the United States' Republican administration's policy response to climate change. Of particular interest is the increasing recognition that apocalyptic Christian beliefs are informing America's political economic and public understanding of environmental issues, thus allowing climate change to be interpreted from a religious frame of reference that could impact a viable response in a country whose GHG emissions are amongst the highest in the world. While liberal secularists may think the Christian apocalypse to be a misguided belief, scientific discourses on the potential interacting impacts of climatic changes and energy shortages offer an almost complementary rational depiction of apocalypse. By bringing these Christian and secular revelations into dialogue, the following interdisciplinary analysis offers a unique perspective on the way in which apocalyptic thought can both negatively and positively inform a political economic response to climate change.


2012 ◽  
Vol 1 (1) ◽  
pp. 7-37
Author(s):  
Bruno Zeller ◽  
Michael Longo

In a fragmented global environment, the efforts of state and non-state actors are important in assessing the state of play on climate change mitigation actions around the world. This article will consider from a comparative perspective the various legislative models for addressing climate change and the reduction of GHG emissions with particular focus on the EU, USA, Australia and Switzerland. As legal developments are not limited to legislative schemes, this article will examine the voluntary carbon offset market and other trade related solutions to GHG emissions which have emerged in the absence of mandatory limitation systems. Also warranting attention are the actions of private parties in common law jurisdictions to bring legal proceedings against power companies for damage caused by climate change. Together, these developments demonstrate that climate change abatement is not the sole remit of the legislature.


Organization ◽  
2018 ◽  
Vol 25 (5) ◽  
pp. 609-635 ◽  
Author(s):  
Lucy McCarthy ◽  
Anne Touboulic ◽  
Lee Matthews

There have been calls for a shift of focus toward the political and power-laden aspects of transitioning toward socially equitable global supply chains. This article offers an empirically grounded response to these calls from a critical realist stance in the context of global food supply chains. We examine how an imaginary for sustainable farming structured around an instrumental construction of empowerment limits what is viewed as permissible, desirable, and possible in global food supply chains. We adopt a multimodal critical discourse analysis to examine the sustainable farming imaginary for smallholder farmers constructed by one large organization, Unilever, in a series of videos produced and disseminated on YouTube. We expose the underlying mechanisms of power and marginalization at work within the sustainability imaginary and show how ‘empowerment’ has the potential to create new dependencies for these farmers. We recontextualize the representations to show that while the imaginary may be commercially feasible, it is less achievable in terms of empowering smallholder farmers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cristhian Camilo Chávez-Arias ◽  
Gustavo Adolfo Ligarreto-Moreno ◽  
Augusto Ramírez-Godoy ◽  
Hermann Restrepo-Díaz

Maize (Zea mays L.) is one of the main cereals grown around the world. It is used for human and animal nutrition and also as biofuel. However, as a direct consequence of global climate change, increased abiotic and biotic stress events have been reported in different regions of the world, which have become a threat to world maize yields. Drought and heat are environmental stresses that influence the growth, development, and yield processes of maize crops. Plants have developed dynamic responses at the physiological, biochemical, and molecular levels that allow them to escape, avoid and/or tolerate unfavorable environmental conditions. Arthropod herbivory can generate resistance or tolerance responses in plants that are associated with inducible and constitutive defenses. Increases in the frequency and severity of abiotic stress events (drought and heat), as a consequence of climate change, can generate critical variations in plant-insect interactions. However, the behavior of herbivorous arthropods under drought scenarios is not well understood, and this kind of stress may have some positive and negative effects on arthropod populations. The simultaneous appearance of different environmental stresses and biotic factors results in very complex plant responses. In this review, recent information is provided on the physiological, biochemical, and molecular responses of plants to the combination of drought, heat stress, and the effect on some arthropod pests of interest in the maize crop.


2014 ◽  
pp. 148-189
Author(s):  
Angie Poliquit

The socio-economic contribution of livestock production to global livelihood and food security offsets its negative effects on the environment through greenhouse gas (GHG) emission. Livestocks are emitters of GHGs, carbon dioxide (CO2) from land conversion and deforestation, nitrous oxide (N2O) from manure and slurry, and methane (CH4) from animal digestion which significantly contribute to climate change. Climate change has both direct and indirect impacts on animal farming. Thus, the main concern nowadays is toward the development of programs for adaptation and mitigation of GHG emissions. This review provides knowledge about climate change impacts on livestock production systems with the identification of strategies for livestock adaptation to climate change and mitigation of GHG emissions.


Sign in / Sign up

Export Citation Format

Share Document