The effect of MFC on the pressability and paper properties of TMP and GCC based sheets

2012 ◽  
Vol 27 (2) ◽  
pp. 388-396 ◽  
Author(s):  
Collin Hii ◽  
Øyvind W. Gregersen ◽  
Gary Chinga-Carrasco ◽  
Øyvind Eriksen

Abstract Different qualities of microfibrillated cellulose (MFC) were blended with thermomechanical pulp (TMP) and ground calcium carbonate (GCC) filler. The addition of MFC reduced the drainage of the pulp suspension but improved strength properties. Wet pressing experiments showed that optimal use of MFC and filler could enhance the strength and optical properties without reducing the solids content after wet pressing. Field-emission scanning electron microscopy (FESEM) revealed that MFC adsorbed onto and contributed to the bonding of the filler particles and fibres. The MFC binds the filler-MFC-fines aggregates to the fibre network and partially filled the pore network. As a result, MFC addition increased the air resistance and internal bonding of the sheet.

2012 ◽  
Vol 27 (4) ◽  
pp. 790-797 ◽  
Author(s):  
Collin Hii ◽  
Øyvind W. Gregersen ◽  
Gary Chinga-Carrasco ◽  
Øyvind Eriksen

Abstract The dewatering ability and wet sheet structure after pressing was studied using a dynamic wet pressing simulator in combination with electron microscopy and image analysis. Deinked pulp (DIP) that contains 5% ash dewaters more easi ly than thermomechanical pulp (TMP) when pressed with single roll pulse. The in-plane moisture flow ( crushing) in DIP samples started at higher peak pressure and higher solids content compared to TMP samples. The TMP sample showed higher springback after wet pressing compared to DIP samples. When both TMP and DIP samples were designed to have a higher amount of small pores at the dewatering side surface layers, the samples with coarser TMP pulp could achieve similar dryness as DIP samples when pressed with higher nip pressure. In addition, the DIP samples with higher number of small pores in the outermost I 0 11m thick surface layer in the dewatering side resulted in lower dryness after pressing with a single roll pulse. The effect of filler distribution in paper zdirection on dryness and sheet structure after wet pressing using an 8 milliseconds roll pulse was also studied. In this study the distribution of filler does not affect the maximum achievable dryness (4 1 %) after wet pressing when the total amount of filler in the sheets remains constant, 1 3 .5%. In addition, the samples with more filler in the dewatering layer dewater more easily and yield the maximum achievable dryness ( 40%) after wet pressing at lower nip pressure (2 . 5 MPa) when compared to samples made from TMP (3 6% at 4.4 MPa) and DIP pulps (40% at 4 . 9 MPa).


2012 ◽  
Vol 629 ◽  
pp. 347-351
Author(s):  
Tao Lin ◽  
Jian Wei Song ◽  
Xue Feng Yin ◽  
Zhi Jie Wang

Using Poplar P-RC APMP as raw materials for culture paper making, the effect of conventional papermaking process and P-RC APMP fines-calcium carbonate co-flocculation process on the P-RC APMP culture paper properties were studied. The result showed that, comparing to the conventional papermaking process, co-flocculation process can supply paper with better strength properties, bulk and whiteness. When precipitated calcium carbonate (PCC) or ground calcium carbonate (GCC) were added respectively in conventional papermaking process, the PCC supplied handsheets with better bulk and whiteness, while GCC supplied handsheets with better strength properties. In the co-flocculation process, the effects of PCC and GCC were nearly the same in strength properties and bulk of handsheets, but PCC was more beneficial for whiteness. SEM images showed that PCC distributed more evenly in the fiber network, and well-bonded with fiber network. The particle size of GCC is relatively small, mainly filled in the fiber network and wrapped on the fiber.


2014 ◽  
Vol 29 (2) ◽  
pp. 309-316 ◽  
Author(s):  
Sinke H. Osong ◽  
Sven Norgren ◽  
Per Engstrand

Abstract So far, chemical pulp fibres have been utilized as conventional stock materials for nanocellulose production. The main aim of this work is to use stock materials from mechanical or chemi-thermomechanical pulping process to produce lignin containing nanofibres, which are referred to as nano-ligno-cellulose (NLC) in this study. The present study shows the influence on handsheets of chemi-thermomechanical pulp (CTMP) fibres blended with NLC. For comparison reasons, nanocellulose (NC) from bleached kraft pulp (BKP) was produced in a similar approach as NLC. Both the NLC and the NC were blended with their respective pulp fibres and their corresponding handsheets properties were evaluated with respect to sheet density. It was found that the handsheets of pulp fibres blended with NLC/NC improved the mechanical properties of handsheets with only a slight effect in relation to the sheet density. Improvements in strength properties of handsheets such as z-strength, tensile index, tear index, burst index, Emodulus, strain at break, tensile stiffness, air resistance were observed.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (11) ◽  
pp. 719-728
Author(s):  
SHAKKTHIVEL PIRAMAN ◽  
MARUTHAIYA KARUPAIAH ◽  
RAMALAKSHMI MARIAPPAN ◽  
SRINIVASAN ALAGAR ◽  
KIM MIN

Polymeric inorganic nanocomposites have received considerable attention because of their potential application in diverse areas, including papermaking industries. To develop novel filler materials to improve important paper properties, polyacrylamide (PAM)-coated nano-calcium carbonate (CaCO3) nanocomposite fillers were synthesized and studied for their chemical and morphological characteristics. The effect of PAM-modified CaCO3 nanofillers on properties of paper made with bagasse-based pulp was evaluated and compared with papers made with pristine nano-CaCO3 fillers. The Fourier transform infrared spectroscopy results confirmed the attachment of PAM/CaCO3 nanocomposites with the cellulosic fiber matrix. The scanning electron microscope and light microscopic images confirmed that the PAM-modified CaCO3 fillers deposited larger aggregated clusters of particles on the fiber surfaces more firmly, which caused the improved paper properties. The surface and the optical properties of the bagasse papers filled with PAM preflocculated-CaCO3 nanofillers were tremendously increased without sacrificing strength properties because of the increased fiber-filler-fiber bonding.


Author(s):  
K. W. Robinson

Tension wood (TW) is an abnormal tissue of hardwood trees; although it has been isolated from most parts of the tree, it is frequently found on the upper side of branches and leaning stems. TW has been classically associated with geotropic alignment, but more recently it has been associated with fast growth. Paper made from TW is generally lower in strength properties. Consequently, the paper industries' growing dependence on fast growing, short- rotation trees will result in higher amounts of TW in the final product and a corresponding reduction in strength.Relatively few studies have dealt with the role of TW in the structure of paper. It was suggested that the lower strength properties of TW were due to a combination of factors, namely, its unique morphology, compression failures in the cell wall, and lower hemicellulose content. Central to the unique morphology of the TW fiber is the thick gelatinous layer (G-layer) composed almost entirely of pure cellulose.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (5) ◽  
pp. 21-28 ◽  
Author(s):  
CARL HOUTMAN ◽  
ERIC HORN

Pilot data indicate that wood chip pretreatment with oxalic acid reduced the specific energy required to make thermomechanical pulp. A combined oxalic acid/bisulfite treatment resulted in 21% refiner energy savings and 13% increase in brightness for aspen. A low level of oxalic acid treatment was effective for spruce. Energy savings of 30% was observed with no significant change in strength properties. Adding bisulfite did not significantly increase the brightness of the spruce pulp. For pine, the optimum treatment was a moderate level of oxalic acid, which resulted in 34% energy savings and an increase in strength properties. For all of these treatments 1–3 w/w % carbohydrates were recovered, which can be fermented to produce ethanol. The extract sugar solution contained significant quantities of arabinose.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (10) ◽  
pp. 643-651 ◽  
Author(s):  
ROBERT J. OGLESBY ◽  
HUMPHREY J. MOYNIHAN ◽  
RICARDO B. SANTOS ◽  
ASHOK GHOSH ◽  
PETER W. HART

The impact of commercially prepared, fully bleached pulp viscosity variation on handsheet physical properties was evaluated at different levels of pulp refining. Hardwood pulps from the same brownstock species mix, cooking parameters, and kappa numbers were processed through two different commercial bleach plants: one with a D0(EP)D1D2 sequence and the second with an OD0(EOP)D1 sequence. Additionally, a commercial softwood (predominately Scotts pine) brownstock pulp bleached by an OD0(EP)D1D2 sequence was employed in this study. Pulps with viscosities ranging from 14 to 21 mPa∙s were refined in a Valley beater to two freeness levels, and the associated handsheet physical properties were measured in this study. Over the pulp viscosity range of 14 to 21 mPa∙s, no clear correlation was found to exist between pulp viscosity and related paper physical properties. Finally, a series of laboratory prepared bleached pulps were purposely prepared under non-ideal conditions to reduce their final viscosities to lower values. Handsheets made from these pulps were tested in their unbeaten condition for physical strength properties. Significant and rapid strength loss occurred when the measured pulp viscosity dropped below 12 mPa∙s; overall strength properties showed no correlation to viscosity above the critical 12 mPa∙s value.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 631-638
Author(s):  
FREDERIC KREPLIN ◽  
HANS-JOACHIM PUTZ ◽  
SAMUEL SCHABEL

Paper for recycling is an important fiber source for the production of corrugated base paper. The change in production capacity toward more and more packaging papers affects the composition of paper for recycling and influences the paper quality. This research project investigated the influence of the multiple recycling of five different corrugated base papers (kraftliner, neutral sulfite semichemical [NSSC] fluting, corrugating medium, testliner 2, and testliner 3) on suspension and strength properties under laboratory conditions. The corrugated board base papers were repulped in a low consistency pulper and processed into Rapid-Köthen laboratory sheets. The sheets were then recycled up to 15 times in the same process. In each cycle, the suspension and the paper properties were recorded. In particular, the focus was on corrugated board-specific parameters, such as short-span compression test, ring crush test, corrugating medium test, and burst. The study results indicate how multiple recycling under laboratory conditions affects fiber and paper properties.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (11) ◽  
pp. 731-738 ◽  
Author(s):  
KARITA KINNUNEN-RAUDASKOSKI ◽  
KRISTIAN SALMINEN ◽  
JANI LEHMONEN ◽  
TUOMO HJELT

Production cost savings by lowering basis weight has been a trend in papermaking. The strategy has been to decrease the amount of softwood kraft pulp and increase use of fillers and recycled fibers. These changes have a tendency to lower strength properties of both the wet and dry web. To compensate for the strength loss in the paper, a greater quantity of strength additives is often required, either dosed at the wet end or applied to the wet web by spray. In this pilot-scale study, it was shown how strength additives can be effectively applied with foam-based application technology. The technology can simultaneously increase dryness after wet pressing and enhance dry and wet web strength properties. Foam application of polyvinyl alcohol (PVA), ethylene vinyl alcohol (EVOH), carboxymethyl cellulose (CMC), guar gum, starch, and cellulose microfibrils (CMF) increased web dryness after wet pressing up to 5.2%-units compared to the reference sample. The enhanced dewatering with starch, guar gum, and CMF was detected with a bulk increase. Additionally, a significant increase in z-directional tensile strength of dry web and and in-plane tensile strength properties of wet web was obtained. Based on the results, foam application technology can be a very useful technology for several applications in the paper industry.


2012 ◽  
Vol 27 (4) ◽  
pp. 798-805 ◽  
Author(s):  
Collin Hii ◽  
Øyvind W. Gregersen ◽  
Gary Chinga-Carrasco ◽  
Øyvind Eriksen ◽  
Kai Toven

Abstract This study shows that wet-pressing TMP and DIP with a shoe press pulse may yield similar afterpress solids, provided that an adequate shoe pulse length with similar pressure profile is applied. A wet web with more porous structure in the sheet dewatering (felt) layer seems to contribute to the increased dewatering during wet pressing. In addition, a shoe press pulse with high peak pressure at the end yields higher solids content after wet-pressing and higher bulk compared to a pulse with a peak pressure in the beginning. The increased dewatering during wet-pressing implies a reduction of steam consumption in the dryer.


Sign in / Sign up

Export Citation Format

Share Document