scholarly journals In Vitro Cytotoxicity of Methanolic Extract of Solanum nigrum Using MCF-7 Cell Line

2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Putri Nur Hidayah Al-Zikri ◽  
Muhammad Taher ◽  
Deny Susanti ◽  
Solachuddin Jauhari Arief Ichwan

Luvunga scandens belongs to the family of Rutaceae which usually inhabit tropical and moist environment. This plant is known as ‘Mengkurat Jakun’ among locals and used traditionally to treat fever and fatigue via decoction. The aim of this study was to investigate the cytotoxic activity of the leaves and stems extracts of L. scandens extract. Extracts of the leaves and stems were obtained from sequential extraction procedures by various organic solvents. All extracts were subjected to cytotoxic study by 3-(4, 5-dimethylthaizol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. In in vitro cytotoxicity assay, all L. scandens extracts exhibited cytotoxicity against human breast adenocarcinoma (MCF-7) and human lung adenocarcinoma (A549) cell lines. The IC50 values of dichloromethane and methanol extracts from the leaves of L. scandens against MCF-7 cell line were 62.5 µg/mL and 88.0 µg/mL, respectively, whereas IC50 of methanol extract from stem was 81.0 µg/mL. All extracts were less active against A549 cell line where IC50 value were not be determined. The present findings revealed the potential of L. scandens as a cytotoxic agent against MCF-7 cell line. However, further studies should be planned to evaluate role of the plant in cytotoxic activity.


Author(s):  
Asri Peni Wulandari ◽  
R. R. Indry Noviarin Examinati ◽  
Madihah . ◽  
Desi Harneti Putri Huspa ◽  
Poniah Andayaningsih ◽  
...  

Objective: To investigate the in vitro cytotoxicity effect of the crude ethyl acetate extract of Cladosporium sp. on MCF-7, HeLa, and DU-145 cell lines.Methods: In vitro cytotoxicity was evaluated by tetrazolium reduction assay. The percentage of cell inhibition was analyzed using probit analysis to obtain 50% inhibitory concentration (IC50). Morphological alteration of the cell lines after exposure with extract was observed under an inverted microscope.Results: The ethyl acetate extract of the metabolite performed an anticancer activity for cancer cell line MCF-7, HeLa, and DU-145 with IC50 respectively 8.46 μg/ml; 9.87 μg/ml; and 98.03 μg/ml. The extract shows greater the anticancer activity and has strong antiproliferative on MCF-7 and HeLa cell line than DU-145. Confirmation morphological were observed under the inverted microscope showed a morphological change in cancer cells when incubated with the extract.Conclusion: From the performed assay, the crude extract of Cladosporium sp. exhibit cytotoxic activity against MCF-7, HeLA, and DU-145.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3022 ◽  
Author(s):  
Magdalena Wypij ◽  
Tomasz Jędrzejewski ◽  
Maciej Ostrowski ◽  
Joanna Trzcińska ◽  
Mahendra Rai ◽  
...  

The development of nanotechnology in the last two decades has led to the use of silver nanoparticles (AgNPs) in various biomedical applications, including antimicrobial, anti-inflammatory, and anticancer therapies. However, the potential of the medical application of AgNPs depends on the safety of their use. In this work, we assessed the in vitro cytotoxicity and genotoxicity of silver nanoparticles and identified biomolecules covering AgNPs synthesized from actinobacterial strain SH11. The cytotoxicity of AgNPs against MCF-7 human breast cancer cell line and murine macrophage cell line RAW 264.7 was studied by MTT assay, cell LDH (lactate dehydrogenase) release, and the measurement of ROS (reactive oxygen species) level while genotoxicity in Salmonella typhimurium cells was testing using the Ames test. The in vitro analysis showed that the tested nanoparticles demonstrated dose-dependent cytotoxicity against RAW 264.6 macrophages and MCF-7 breast cancer cells. Moreover, biosynthesized AgNPs did not show a mutagenic effect of S. typhimurium. The analyses and identification of biomolecules present on the surface of silver nanoparticles showed that they were associated with proteins. The SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel electrophoresis) analysis revealed the presence of 34 and 43 kDa protein bands. The identification of proteins performed by using LC-MS/MS (liquid chromatography with tandem mass spectrometry) demonstrated their highest homology to bacterial porins. Capping biomolecules of natural origin may be involved in the synthesis process of AgNPs or may be responsible for their stabilization. Moreover, the presence of natural proteins on the surface of bionanoparticles eliminates the postproduction steps of capping which is necessary for chemical synthesis to obtain the stable nanostructures required for application in medicine.


2016 ◽  
Vol 17 (sup3) ◽  
pp. 131-134 ◽  
Author(s):  
Seyed Abbas Mirmalek ◽  
Ehsan Jangholi ◽  
Mohammad Jafari ◽  
Soheila Yadollah-Damavandi ◽  
Mohammad Amin Javidi ◽  
...  

2019 ◽  
Vol 19 (13) ◽  
pp. 1075-1091 ◽  
Author(s):  
Karla Mirella Roque Marques ◽  
Maria Rodrigues do Desterro ◽  
Sandrine Maria de Arruda ◽  
Luiz Nascimento de Araújo Neto ◽  
Maria do Carmo Alves de Lima ◽  
...  

Background: Considering the need for the development of new antitumor drugs, associated with the great antitumor potential of thiophene and thiosemicarbazonic derivatives, in this work we promote molecular hybridization approach to synthesize new compounds with increased anticancer activity. Objective: Investigate the antitumor activity and their likely mechanisms of action of a series of N-substituted 2-(5-nitro-thiophene)-thiosemicarbazone derivatives. Methods: Methods were performed in vitro (cytotoxicity, cell cycle progression, morphological analysis, mitochondrial membrane potential evaluation and topoisomerase assay), spectroscopic (DNA interaction studies), and in silico studies (docking and molecular modelling). Results: Most of the compounds presented significant inhibitory activity; the NCIH-292 cell line was the most resistant, and the HL-60 cell line was the most sensitive. The most promising compound was LNN-05 with IC50 values ranging from 0.5 to 1.9 µg.mL-1. The in vitro studies revealed that LNN-05 was able to depolarize (dose-dependently) the mitochondrial membrane, induceG1 phase cell cycle arrest noticeably, promote morphological cell changes associated with apoptosis in chronic human myelocytic leukaemia (K-562) cells, and presented no topoisomerase II inhibition. Spectroscopic UV-vis and molecular fluorescence studies showed that LNN compounds interact with ctDNA forming supramolecular complexes. Intercalation between nitrogenous bases was revealed through KI quenching and competitive ethidium bromide assays. Docking and Molecular Dynamics suggested that 5-nitro-thiophene-thiosemicarbazone compounds interact against the larger DNA groove, and corroborating the spectroscopic results, may assume an intercalating interaction mode. Conclusion: Our findings highlight 5-nitro-thiophene-thiosemicarbazone derivatives, especially LNN-05, as a promising new class of compounds for further studies to provide new anticancer therapies.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2020 ◽  
Vol 17 (2) ◽  
pp. 151-159
Author(s):  
Tran Nguyen Minh An ◽  
Pham Thai Phuong ◽  
Nguyen Minh Quang ◽  
Nguyen Van Son ◽  
Nguyen Van Cuong ◽  
...  

: A series of novel 1,3-thiazole derivatives (5a-i) with a modified phenothiazine moiety were synthesized and tested against cancer cell line MCF-7 for their cytotoxicity. Most of them (5a-i) were less cytotoxic or had no activity against MCF-7 cancer cell line. Material and Methods: The IC50 value of compound (4) was 33.84 μM. The compounds (5a-i) were also evaluated for antimicrobial activities, but no significant activity was observed. The antioxidant activity was conducted for target compounds (5a-i). The IC50 value of compound (5b) was 0.151mM. Results: The total amount of energy, ACE (atomic contact energy), energy of receptor (PDB: 5G5J), and ligand interaction of structure (4) were found to be 22.448 Kcal.mol-1 , -247.68, and -91.91 Kcal.mol-1, respectively. The structure (4) is well binded with the receptor because the values of binding energy, steric energy, and the number of hydrogen bondings are -91.91, 22.448 kcal.mol-1, and 2, respectively. It shows that structure (4) has good cytotoxicity with MCF-7 in vitro. Conclusion: The increasing of docking ability of structures (5a-i) with the receptor is presented in increasing order as (5f)>(5e)>(5g)>(5a)>(5b)>(5d)>(5c)>(5i)>(5h). The structure bearing substitution as thiosemicarbazone (4), nitrogen heterocyclic (5f), halogen (5e), and azide (5g) showed good cytotoxicity activity in vitro.


2020 ◽  
Vol 16 (3) ◽  
pp. 340-349
Author(s):  
Ebrahim S. Moghadam ◽  
Farhad Saravani ◽  
Ernest Hamel ◽  
Zahra Shahsavari ◽  
Mohsen Alipour ◽  
...  

Objective: Several anti-tubulin agents were introduced for the cancer treatment so far. Despite successes in the treatment of cancer, these agents cause toxic side effects, including peripheral neuropathy. Comparing anti-tubulin agents, indibulin seemed to cause minimal peripheral neuropathy, but its poor aqueous solubility and other potential clinical problems have led to its remaining in a preclinical stage. Methods: Herein, indibulin analogues were synthesized and evaluated for their in vitro anti-cancer activity using MTT assay (on the MCF-7, T47-D, MDA-MB231 and NIH-3T3 cell lines), annexin V/PI staining assay, cell cycle analysis, anti-tubulin assay and caspase 3/7 activation assay. Results: One of the compounds, 4a, showed good anti-proliferative activity against MCF-7 cells (IC50: 7.5 μM) and low toxicity on a normal cell line (IC50 > 100 μM). All of the tested compounds showed lower cytotoxicity on normal cell line in comparison to reference compound, indibulin. In the annexin V/PI staining assay, induction of apoptosis in the MCF-7 cell line was observed. Cell cycle analysis illustrated an increasing proportion of cells in the sub-G-1 phase, consistent with an increasing proportion of apoptotic cells. No increase in G2/M cells was observed, consistent with the absence of anti-tubulin activity. A caspase 3/7 assay protocol showed that apoptosis induction by more potent compounds was due to activation of caspase 3. Conclusion: Newly synthesized compounds exerted acceptable anticancer activity and further investigation of current scaffold would be beneficial.


2020 ◽  
Vol 20 (6) ◽  
pp. 700-708
Author(s):  
Mitra Korani ◽  
Sara Nikoofal-Sahlabadi ◽  
Amin R. Nikpoor ◽  
Solmaz Ghaffari ◽  
Hossein Attar ◽  
...  

Aims: Here, three liposomal formulations of DPPC/DPPG/Chol/DSPE-mPEG2000 (F1), DPPC/DPPG/Chol (F2) and HSPC/DPPG/Chol/DSPE-mPEG2000 (F3) encapsulating BTZ were prepared and characterized in terms of their size, surface charge, drug loading, and release profile. Mannitol was used as a trapping agent to entrap the BTZ inside the liposomal core. The cytotoxicity and anti-tumor activity of formulations were investigated in vitro and in vivo in mice bearing tumor. Background: Bortezomib (BTZ) is an FDA approved proteasome inhibitor for the treatment of mantle cell lymphoma and multiple myeloma. The low solubility of BTZ has been responsible for the several side effects and low therapeutic efficacy of the drug. Encapsulating BTZ in a nano drug delivery system; helps overcome such issues. Among NDDSs, liposomes are promising diagnostic and therapeutic delivery vehicles in cancer treatment. Objective: Evaluating anti-tumor activity of bortezomib liposomal formulations. Methods: Data prompted us to design and develop three different liposomal formulations of BTZ based on Tm parameter, which determines liposomal stiffness. DPPC (Tm 41°C) and HSPC (Tm 55°C) lipids were chosen as variables associated with liposome rigidity. In vitro cytotoxicity assay was then carried out for the three designed liposomal formulations on C26 and B16F0, which are the colon and melanoma cancer mouse-cell lines, respectively. NIH 3T3 mouse embryonic fibroblast cell line was also used as a normal cell line. The therapeutic efficacy of these formulations was further assessed in mice tumor models. Result: MBTZ were successfully encapsulated into all the three liposomal formulations with a high entrapment efficacy of 60, 64, and 84% for F1, F2, and F3, respectively. The findings showed that liposomes mean particle diameter ranged from 103.4 to 146.8nm. In vitro cytotoxicity studies showed that liposomal-BTZ formulations had higher IC50 value in comparison to free BTZ. F2-liposomes with DPPC, having lower Tm of 41°C, showed much higher anti-tumor efficacy in mice models of C26 and B16F0 tumors compared to F3-HSPC liposomes with a Tm of 55°C. F2 formulation also enhanced mice survival compared with untreated groups, either in BALB/c or in C57BL/6 mice. Conclusion: Our findings indicated that F2-DPPC-liposomal formulations prepared with Tm close to body temperature seem to be effective in reducing the side effects and increasing the therapeutic efficacy of BTZ and merits further investigation.


Sign in / Sign up

Export Citation Format

Share Document