scholarly journals Experimental study of amphibole crystallization from the highly magnesian melt of Shiveluch volcano

2019 ◽  
Vol 27 (5) ◽  
pp. 476-495 ◽  
Author(s):  
A. G. Simakin ◽  
V. N. Devyatova ◽  
T. P. Salova ◽  
O. Yu. Shaposhnikova

The paper reports results of an experimental study of amphibole crystallization from the highly magnesian andesite melt of Shiveluch volcano, Kamchatka. The experiments were carried out in IHPV at 300 MPa and 940–980°С in iron-saturated platinum capsules, using rapid quenching and temperature oscillations (in some experiments). The redox state of iron in the system was measured before and after the experiments using Mössbauer spectroscopy. The maximum size of the experimental amphibole crystals (up to 200 μm) was close to those of natural amphibole phenocrysts in the volcanic rocks of Shiveluch volcano. The experimental data show that the content of octahedrally coordinated Al (Al6) in the amphibole considerably varies with small variations in the intensive parameters (P, T, and fO2) and composition of the melt, and the maximum Al6 concentration can be evaluated only by using a reasonably large dataset of amphibole analyses. A modified 13eCNK method is suggested to calculate the values of Al6 and Fe3+/Fe2+ with regard for the Ti concentration and the probable partial transfer of Mg into site B in high-Mg amphibole. Calculations with this modified technique yield lower Fe3+/Fe2+ and higher Al6 values. Our experimental data show that the temperature of amphibole liquidus crystallization decreases from about 990 to 960°C when the oxygen fugacity drops from NNO + 1.5 to NNO + 0.4. In view of this, the transition from amphibole-bearing to anhydrous mineral assemblage in the magmas of Shiveluch volcano might have been caused by variations of the oxygen fugacity but not water. The application of our geobarometer to amphiboles from Shiveluch volcano (extrusions Krasnaya and Karan) yields the highest pressure estimate of above 1 GPa, corresponding to the P-T conditions of the melting of garnet-bearing amphibolite in the lower crust.

Author(s):  
Ivelin Kostov

In the work brought some experimental data of kinematic parameters of movement of cars forced idle, as the software product was used to diagnose 900 ATS, which recorded kinematic parameters of vehicle. On the basis of the conducted experimental research results are shown tabulated and analysed.


1992 ◽  
Vol 114 (3) ◽  
pp. 386-389 ◽  
Author(s):  
V. K. Gahlot ◽  
V. Seshadri ◽  
R. C. Malhotra

Experimental data on the performance of the centrifugal pumps pumping mixtures of solids and water have been presented. The solids used were coal of density 1480 kg/m3 and zinc tailings of density 2850 kg/m3. Maximum size of particles was approximately 3 mm. Tests have been conducted with a rubber lined impeller pump and a metal impeller pump. Effects of solid properties (viz: density, size, and size distribution as well as concentration of solids) on the performance of the pumps have been studied. The measured performance of pumps is compared with the predictions based on the correlations available in literature and a modified empirical relationship has been proposed for the prediction of the pump performance with slurries.


2009 ◽  
Vol 23 (7) ◽  
pp. 735-744 ◽  
Author(s):  
Darcy S. Reisman ◽  
Robert Wityk ◽  
Kenneth Silver ◽  
Amy J. Bastian

Background and Objective. Following stroke, subjects retain the ability to adapt interlimb symmetry on the split-belt treadmill. Critical to advancing our understanding of locomotor adaptation and its usefulness in rehabilitation is discerning whether adaptive effects observed on a treadmill transfer to walking over ground. We examined whether aftereffects following split-belt treadmill adaptation transfer to overground walking in healthy persons and those poststroke. Methods. Eleven poststroke and 11 age-matched and gender-matched healthy subjects walked over ground before and after walking on a split-belt treadmill. Adaptation and aftereffects in step length and double support time were calculated. Results. Both groups demonstrated partial transfer of the aftereffects observed on the treadmill ( P < .001) to overground walking ( P < .05), but the transfer was more robust in the subjects poststroke ( P < .05). The subjects with baseline asymmetry after stroke improved in asymmetry of step length and double limb support ( P = .06). Conclusions. The partial transfer of aftereffects to overground walking suggests that some shared neural circuits that control locomotion for different environmental contexts are adapted during split-belt treadmill walking. The larger adaptation transfer from the treadmill to overground walking in the stroke survivors may be due to difficulty adjusting their walking pattern to changing environmental demands. Such difficulties with context switching have been considered detrimental to function poststroke. However, we propose that the persistence of improved symmetry when changing context to overground walking could be used to advantage in poststroke rehabilitation.


1935 ◽  
Vol 31 (8-9) ◽  
pp. 1112-1112

Analyzing clinical and experimental data on hypochloremia, the authors show that both during vomiting and when giving diuretica, it is not only about the loss of chlorine, but at the same time a large amount of water is lost.


Author(s):  
A. L. Lebedev ◽  
I. V. Avilina

Experimental study of kinetics of dissolution of hypso anhydrites at 25 ᵒC made it possible to formulate model of the process in the form of a balance equation for the kinetics of dissolution of gypsum, anhydrite (first and second orders, respectively) and kinetics of precipitation of gypsum (second order). The processing of the experimental data were carried out on the basis of the solution of the Riccati equation. When taking into account the common-ion effect on the solubility of gypsum and anhydrite, the calculated values turned out to be more comparable with the experimental ones.


2021 ◽  
Vol 34 (1) ◽  
pp. 79-88
Author(s):  
Dean Radin ◽  
Helané Wahbeh ◽  
Leena Michel ◽  
Arnaud Delorme

An experiment we conducted from 2012 to 2013, which had not been previously reported, was designed to explore possible psychophysical effects resulting from the interaction of a human mind with a quantum system. Participants focused their attention toward or away from the slits in a double-slit optical system to see if the interference pattern would be affected. Data were collected from 25 people in individual half-hour sessions; each person repeated the test ten times for a total of 250 planned sessions. “Sham” sessions designed to mimic the experimental sessions without observers present were run immediately before and after as controls. Based on the planned analysis, no evidence for a psychophysical effect was found. Because this experiment differed in two essential ways from similar, previously reported double-slit experiments, two exploratory analyses were developed, one based on a simple spectral analysis of the interference pattern and the other based on fringe visibility. For the experimental data, the outcome supported a pattern of results predicted by a causal psychophysical effect, with the spectral metric resulting in a 3.4 sigma effect (p = 0.0003), and the fringe visibility metric resulting in 7 of 22 fringes tested above 2.3 sigma after adjustment for type I error inflation, with one of those fringes at 4.3 sigma above chance (p = 0.00001). The same analyses applied to the sham data showed uniformly null outcomes. Other analyses exploring the potential that these results were due to mundane artifacts, such as fluctuations in temperature or vibration, showed no evidence of such influences. Future studies using the same protocols and analytical methods will be required to determine if these exploratory results are idiosyncratic or reflect a genuine psychophysical influence.


Author(s):  
Jian Xu ◽  
Liyang Zhou ◽  
Yanfeng Li ◽  
Jiulong Ding ◽  
Songhe Wang ◽  
...  

Author(s):  
Sayed A. Nassar ◽  
Ramanathan M. Ranganathan ◽  
Saravanan Ganeshmurthy ◽  
Gary C. Barber

This experimental study investigates the effect of tightening speed and coating on both the torque – tension relationship and wear pattern in threaded fastener applications. The fastener torque – tension relationship is highly sensitive to normal variations in the coefficients of friction between threads and between the turning head and the surface of the joint. Hence, the initial level of the joint clamp load and the overall integrity and reliability of a bolted assembly is significantly influenced by the friction coefficients. The effect of repeated tightening and loosening is also investigated using M12, Class 8.8, fasteners with and without zinc coating. The torque – tension relationship is examined in terms of the non-dimensional nut factor K. The wear pattern is examined by monitoring the changes in surface roughness using a WYKO optical profiler and by using a LECO optical microscope. A Hitachi S-3200N Scanning Electron Microscope (SEM) is used to examine the contact surfaces, under the fastener head, after each tightening/loosening cycle. Experimental data on the effect of variables and the tightening speed, fastener coating and repeated tightening on the nut factor are presented and analyzed for M8 and M12, class 8.8, fasteners.


2016 ◽  
Vol 858 ◽  
pp. 300-304
Author(s):  
Zhen Fu Chen ◽  
Dan Wu ◽  
Qiu Wang Tao ◽  
Yuan Chu Gan

The high temperature stability of AC-16, AC-13, AC-20 under specimen thickness of 5cm and 6cm is studied through indoor asphalt mixture high rutting test, Through comparison and analysis about experimental data, it is found that the stability of AC-16, AC-13, AC-20 asphalt mixture at high- temperature decreases in turn. It is shown that thickness changes did not affect the change trend of the high temperature stability under gradation change, and the stability of AC-16 at high-temperature is the best, the AC-13 is second and the AC-20 is less.


Sign in / Sign up

Export Citation Format

Share Document