scholarly journals Experimental Investigation on the Advantages of Dry Machining over Wet Machining during Turning of AISI 1020 Steel

Author(s):  
Boki Dugo Bedada ◽  
Guteta Kabeta Woyesssa ◽  
Moera Gutu Jiru ◽  
Besufekad Negash Fetene ◽  
Tekle Gemechu

In this study, the experiment was conducted to investigate the advantage of dry machining over wet machining during turning of AISI 1020 steel using cemented carbide tool on a CNC lathe machine. Surface roughness and cutting temperature were measured by VOGEL surface roughness tester and infrared thermometer respectively. The experiments were conducted based on Taguchi L9 orthogonal array design. Surface roughness, cutting temperature, tool life, and machining cost were analyzed graphically. The average surface roughness and cutting temperature achieved with wet machining was 2.01 μm and 26.540C, which was 17.41% and 44.86% respectively, lower than dry machining. The high cutting temperature in dry turning result in short tool life, which was 41.15% shorter than wet turning. The machining cost of wet turning was about 56% greater than the cost of dry turning. The cost of coolant in wet turning is 42.88% greater than that of the cutting tools. The highest cost was shared by tool cost, which was 81.33% of the total cost for dry turning, while 70.00% of the total cost was shared by coolant cost for wet turning. Results revealed that dry turning is more economical than wet turning.

2020 ◽  
Author(s):  
Yikun Yuan ◽  
Wenbin Ji ◽  
Shijie Dai

Abstract To ensure accuracy and improve the processing efficiency of Ti–6Al–4V alloys, dry turning experiment of Ti–6Al–4V was carried out using a novel TiB2–ZrC cermet tool. The tool was reinforced by nanoscale VC additive and exhibited excellent hardness and fracture toughness. Response surface methodology (RSM) was used in the experiment to verify and evaluate the cutting performance of TiB2–ZrC cermet tool. The cutting forces and surface roughness (Ra) were selected as the optimization objective. Then the analysis of variance (ANOVA) was employed to ascertain the effective cutting parameters on response factors and demonstrate accuracy of the models. It was found that the effective cutting parameters on surface roughness was feed rate, while cutting depth significantly affected cutting forces. And the confirmation experiments showed that the predicted values coincide with experimental values nearly. Based on the optimized cutting parameters, the tool life and tool wear mechanism were investigated. When the vc, ap and f were 100 mm/min, 0.16 mm, 0.1 mm/rev, respectively, the cutting length and tool life could reach to 3233 m and 29.4 min, respectively, due to the excellent wear resistance and stability of TiB2–ZrC cermet tool at high cutting temperature. In this case, the main wear mechanism was adhesive wear and diffusion wear.


Author(s):  
Bakytzhan Donenbayev ◽  
Karibek Sherov ◽  
Assylkhan Mazdubay ◽  
Aybek Sherov ◽  
Medgat Mussayev ◽  
...  

This article presents the experimental study results of the process of rotational friction holes boring using a cup cutter surfaced by STOODY M7-G material. As a result of experimental studies, the following quality indicators were achieved: surface roughness within Ra=10÷1,25 micrometer; surface hardness within HB 212-248. Using a cup cutter surfaced by STOODY M7-G material in case of rotational friction boring of large-diameter holes for large-sized parts can improve processing performance in comparison with cutting tools equipped with hard metal plates and provided the required surface roughness. Preliminary calculations showed that the manufacture of cup cutters from non-instrumental materials reduces the cost of the cutting tool by 5-7 times and the cost of the operation by 1.5-2 times.


Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In cutting of Ti-6Al-4V alloy, the cutting speed is limited since a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. On the other hand, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face successfully decreases the cutting temperature, resulting in a significant suppression of both crater wear and flank wear. In addition, the temperature zone where the texture tool is effective in terms of the tool life in the Ti-6Al-4V cutting was discussed.


2015 ◽  
Vol 77 (27) ◽  
Author(s):  
A. H. Musfirah ◽  
J. A. Ghani ◽  
C. H. Che Haron ◽  
M. S. Kasim

In tribology phenomenon, surface roughness has become one of the most important factors that contributed to the evaluation of part quality during machining operation. In order to understand the behavior of cryogenic cooling assistance in machining Inconel 718, this paper aims to provide better understanding of tribological characterization of liquid nitrogen near the cutting zone of this material in ball end milling process. Experiments were performed using a multi-layer TiAlN/AlCrN-coated carbide inserts under cryogenic and dry cutting condition. A transient milling simulation model using Third Wave Advantedge has been done in order to gain in-depth understanding of the thermomechanical aspects of machining and their influence on resulted part quality. The cryogenic results of the cutting temperature, cutting forces and surface roughness of the ball nose cutting tool have been compared with those of dry machining. Finally, experimental results proved that cryogenic implementation can  decrease the amount of heat transferred to the tool up to almost 70% and improve the surface roughness to a maximum of 31% when compared with dry machining. Furthermore, the microstructure of machined workpiece revealed that cryogenic cooling also can reduce a plastic deformation at the cutting surface as compared with the dry machining. 


2020 ◽  
Author(s):  
Yikun Yuan ◽  
Wenbin Ji ◽  
Shijie Dai ◽  
Huibo Zhang

Abstract To ensure accuracy and improve the processing efficiency of Ti–6Al–4V alloys, dry turning experiment of Ti–6Al–4V was carried out using a novel TiB2-based cermet tool. The tool was reinforced by nanoscale VC additive and exhibited excellent hardness and fracture toughness.Response Surface Methodology (RSM) was used in the experiment to verify andevaluatethe cutting performance ofTiB2-based cermet tool.The cutting forces and machined surface roughness (Ra) were selected as the optimization objective. An analysis of variance (ANOVA) was used to find out the effective machining parameters on response factorsand demonstrate correctness of the models. It was found that theeffective factor on surface roughness was feed rate, while cutting depth significantly affected cutting forces.And the confirmation experiments showedthat the predicted values were in good agreement with experimental values. Based on the optimized cutting parameters, the tool life was measured and tool wear mechanismwasinvestigated. When the vc, apandfwere 100 mm/min, 0.16 mm, 0.1 mm/rev respectively for Ra optimization, the cutting length and tool lifecould reach to 3233 m and 29.4 min, respectively, due to the excellentwear resistance and stability of TiB2-based cermet tool at high cutting temperature. In this case, the main wear mechanism was adhesive wear and diffusion wear.


2008 ◽  
Vol 1 (3) ◽  
pp. 222-230 ◽  
Author(s):  
H.H. Habeeb ◽  
K.A. Abou-El-Ho ◽  
Bashir Mohamad ◽  
Jahara A. Ghani ◽  
K. Kadirgama

2010 ◽  
Vol 102-104 ◽  
pp. 653-657 ◽  
Author(s):  
Xu Hong Guo ◽  
Li Jun Teng ◽  
Wei Wang ◽  
Ting Ting Chen

In recent years, the machinability of magnesium alloy is concerned more and more by the public. In this paper, a study on the cutting properties of magnesium alloy AZ91D when dry turning with kentanium cutting tools is presented. It shows the cutting force measured by a data acquisition system which is made up of Kistler9257B piezoelectric crystal sensor dynamometer, Kistler5070A10100 charge amplifier and computer. The effect of cutting parameters on cutting force was studied, and the experimental formula was built. The tool wear and chip characteristics were observed with KYKY-EM3200 electron scanning microscope and EDAX PV9900 alpha ray spectrometer, while the surface roughness of the workpiece was measured with 2205 profilometer. Results showed that the cutting depth was the main influence factor on cutting force, followed by feed rate and cutting speed . The main form of tool wear showed to be diffusive wear and adhesive wear. The feed rate had the main influence on chip form and the workpiece surface roughness, cutting speed was less effective, the cutting depth was the least.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Mohd Sanusi Abdul Aziz ◽  
Bahrin Ikram Redzuwan ◽  
Muhammad Zaimi ◽  
Raja Izamshah ◽  
Mohd Shahir Kasim ◽  
...  

This paper presents a new approach of electroless nickel deposition (END) on cutting tools as to enhance tool performance. END involves several reactions in aqueous solution and is performed without using electrical power. The cutting performance of electroless ternary Ni-W-P alloy-coated cutting tools that were prepared in plating baths with different pH levels and with the addition of heat treatment was investigated. The cutting tool life was evaluated during machining on AISI D2 steel followed by measurement of surface roughness. Experimental results showed that END cutting tools produced from a plating bath with a pH of 8.5 with heat treatment resulted in the longest tool life, which was 7 minutes 32 seconds, and the lowest surface roughness, which was 0.412 μm. High deposition rate and high thickness of coating obtained under such pH condition were found to be the main factors in enhancing tool life. Furthermore, the addition of heat treatment increases the hardness and improves the coating surface.


Sign in / Sign up

Export Citation Format

Share Document