scholarly journals Assessing the transferability and robustness of an enhanced temperature-index glacier-melt model

2009 ◽  
Vol 55 (190) ◽  
pp. 258-274 ◽  
Author(s):  
Marco Carenzo ◽  
Francesca Pellicciotti ◽  
Stefan Rimkus ◽  
Paolo Burlando

AbstractWe investigate the transferability of an enhanced temperature-index melt model that was developed and tested on Haut Glacier d’Arolla, Switzerland, in the 2001 season. The model’s empirical parameters (temperature factor, TF, and shortwave radiation factor, SRF) are recalibrated for: (1) other locations on Haut Glacier d’Arolla; (2) subperiods of distinct meteorological conditions; (3) different years on Haut Glacier d’Arolla; and (4) other glaciers in different years. The model parameters are optimized against simulations of an energy-balance model validated against ablation observations. Results are compared with those obtained with the original parameters. The model works very well when applied to other sites, seasons and glaciers, with the exception of overcast conditions. Differences are due to underestimation of high melt rates. The parameter values are associated with the prevailing energy-balance conditions, showing that high SRF are obtained on clear-sky days, whereas higher TF are typical of locations where glacier winds prevail and turbulent fluxes are high. We also provide a range of parameters clearly associated with the site’s location and its meteorological characteristics that could help to assign parameter values to sites where few data are available.

2011 ◽  
Vol 5 (4) ◽  
pp. 1011-1028 ◽  
Author(s):  
A. H. MacDougall ◽  
B. A. Wheler ◽  
G. E. Flowers

Abstract. Efforts to project the long-term melt of mountain glaciers and ice-caps require that melt models developed and calibrated for well studied locations be transferable over large regions. Here we assess the sensitivity and transferability of parameters within several commonly used melt models for two proximal sites in a dry subarctic environment of northwestern Canada. The models range in complexity from a classical degree-day model to a simplified energy-balance model. Parameter sensitivity is first evaluated by tuning the melt models to the output of an energy balance model forced with idealized inputs. This exercise allows us to explore parameter sensitivity both to glacier geometric attributes and surface characteristics, as well as to meteorological conditions. We then investigate the effect of model tuning with different statistics, including a weighted coefficient of determination (wR2), the Nash-Sutcliffe efficiency criterion (E), mean absolute error (MAE) and root mean squared error (RMSE). Finally we examine model parameter transferability between two neighbouring glaciers over two melt seasons using mass balance data collected in the St. Elias Mountains of the southwest Yukon. The temperature-index model parameters appear generally sensitive to glacier aspect, mean surface elevation, albedo, wind speed, mean annual temperature and temperature lapse rate. The simplified energy balance model parameters are sensitive primarily to snow albedo. Model tuning with E, MAE and RMSE produces similar, or in some cases identical, parameter values. In twelve tests of spatial and/or temporal parameter transferability, the results with the lowest RMSE values with respect to ablation stake measurements were achieved twice with a classical temperature-index (degree-day) model, three times with a temperature-index model in which the melt parameter is a function of potential radiation, and seven times with a simplified energy-balance model. A full energy-balance model produced better results than the other models in nine of twelve cases, though the tuning of this model differs from that of the others.


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


2007 ◽  
Vol 20 (5) ◽  
pp. 843-855 ◽  
Author(s):  
J. A. Kettleborough ◽  
B. B. B. Booth ◽  
P. A. Stott ◽  
M. R. Allen

Abstract A method for estimating uncertainty in future climate change is discussed in detail and applied to predictions of global mean temperature change. The method uses optimal fingerprinting to make estimates of uncertainty in model simulations of twentieth-century warming. These estimates are then projected forward in time using a linear, compact relationship between twentieth-century warming and twenty-first-century warming. This relationship is established from a large ensemble of energy balance models. By varying the energy balance model parameters an estimate is made of the error associated with using the linear relationship in forecasts of twentieth-century global mean temperature. Including this error has very little impact on the forecasts. There is a 50% chance that the global mean temperature change between 1995 and 2035 will be greater than 1.5 K for the Special Report on Emissions Scenarios (SRES) A1FI scenario. Under SRES B2 the same threshold is not exceeded until 2055. These results should be relatively robust to model developments for a given radiative forcing history.


1998 ◽  
Vol 44 (147) ◽  
pp. 239-247 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Thomas Konzelmann ◽  
Christoph Marty ◽  
Ole B. Olesen

AbstractReconnaissance energy-balance studies were made for the first time at two sites in North Greenland to compare with conditions in West Greenland. The field experiments were planned to save weight because it is expensive to operate in North Greenland. The larger energy components (incoming radiation and ablation) were measured for 55 days altogether, and the smaller components were evaluated by indirect methods, e.g. turbulent fluxes are calculated from air temperature, humidity and wind speed, to save the weight of instruments. The energy-balance model is “tuned" by choosing surface roughness and albedo to reduce the mean error between measured ablation and modelled daily melting. The error standard deviation for ablation is only ± 5 kg m−2d−1’, which is much lower than found in West Greenland, due to better instruments and modelling in the present study. Net radiation is the main energy source for melting in North Greenland but ablation is relatively low because sublimation and conductive-heat fluxes use energy that would otherwise be available for melting. There is a strong diurnal variation in ablation, mainly forced by variations in shortwave radiation and reinforced by nocturnal cooling of the ice surface by outgoing longwave radiation and sublimation. The model frequently predicts a frozen glacier surface at night even when air temperatures are positive.


2011 ◽  
Vol 24 (5) ◽  
pp. 1480-1498 ◽  
Author(s):  
Andrew H. MacDougall ◽  
Gwenn E. Flowers

Abstract Modeling melt from glaciers is crucial to assessing regional hydrology and eustatic sea level rise. The transferability of such models in space and time has been widely assumed but rarely tested. To investigate melt model transferability, a distributed energy-balance melt model (DEBM) is applied to two small glaciers of opposing aspects that are 10 km apart in the Donjek Range of the St. Elias Mountains, Yukon Territory, Canada. An analysis is conducted in four stages to assess the transferability of the DEBM in space and time: 1) locally derived model parameter values and meteorological forcing variables are used to assess model skill; 2) model parameter values are transferred between glacier sites and between years of study; 3) measured meteorological forcing variables are transferred between glaciers using locally derived parameter values; 4) both model parameter values and measured meteorological forcing variables are transferred from one glacier site to the other, treating the second glacier site as an extension of the first. The model parameters are transferable in time to within a <10% uncertainty in the calculated surface ablation over most or all of a melt season. Transferring model parameters or meteorological forcing variables in space creates large errors in modeled ablation. If select quantities (ice albedo, initial snow depth, and summer snowfall) are retained at their locally measured values, model transferability can be improved to achieve ≤15% uncertainty in the calculated surface ablation.


2018 ◽  
Vol 11 (10) ◽  
pp. 4175-4194 ◽  
Author(s):  
Xenia Stavropulos-Laffaille ◽  
Katia Chancibault ◽  
Jean-Marc Brun ◽  
Aude Lemonsu ◽  
Valéry Masson ◽  
...  

Abstract. Climate change and demographic pressures are affecting both the urban water balance and microclimate, thus amplifying urban flooding and the urban heat island phenomena. These issues need to be addressed when engaging in urban planning activities. Local authorities and stakeholders have therefore opted for more nature-based adaptation strategies, which are especially suitable in influencing hydrological and energy processes. Assessing the multiple benefits of such strategies on the urban microclimate requires high-performance numerical tools. This paper presents recent developments dedicated to the water budget in the Town Energy Balance for vegetated surfaces (TEB-Veg) model (surface externalisée; SURFEX v7.3), thus providing a more complete representation of the hydrological processes taking place in the urban subsoil. This new hydrological module is called TEB-Hydro. Its inherent features include the introduction of subsoil beneath built surfaces, the horizontal rebalancing of intra-mesh soil moisture, soil water drainage via the sewer network and the limitation of deep drainage. A sensitivity analysis is then performed in order to identify the hydrological parameters required for model calibration. This new TEB-Hydro model is evaluated on two small residential catchments in Nantes (France), over two distinct periods, by comparing simulated sewer discharge with observed findings. In both cases, the model tends to overestimate total sewer discharge and performs better under wet weather conditions, with a Kling–Gupta efficiency (KGE) statistical criterion greater than 0.80 vs. approximately 0.60 under drier conditions. These results are encouraging since the same set of model parameters is identified for both catchments, irrespective of meteorological and local physical conditions. This approach offers opportunities to apply the TEB-Hydro model at the city scale alongside projections of climate and demographic changes.


2009 ◽  
Vol 50 (50) ◽  
pp. 16-24 ◽  
Author(s):  
Francesca Pellicciotti ◽  
Marco Carenzo ◽  
Jakob Helbing ◽  
Stefan Rimkus ◽  
Paolo Burlando

AbstractWe discuss the inclusion of the subsurface heat-conduction flux into the calculation of the energy balance and ablation at the glacier–atmosphere interface. Data from automatic weather stations are used to force an energy-balance model at several locations on alpine glaciers and at one site in the dry Andes of central Chile. The heat-conduction flux is computed using a two-layer scheme, assuming that 36% of the net shortwave radiation is absorbed by the surface layer and that the rest penetrates into the snowpack. We compare simulations conducted with and without subsurface heat flux. Results show that assuming a surface temperature of zero degrees leads to a larger overestimation of melt at the sites in the accumulation area (10.4–13.3%) than in the ablation area (0.5–2.8%), due to lower air temperatures and the presence of snow. The difference between simulations with and without heat conduction is also high at the beginning and end of the ablation season (up to 29% for the first 15 days of the season), when air temperatures are lower and snow covers the glacier surface, while they are of little importance during periods of sustained melt at all the locations investigated.


2010 ◽  
Vol 4 (4) ◽  
pp. 2143-2167 ◽  
Author(s):  
A. H. MacDougall ◽  
B. A. Wheler ◽  
G. E. Flowers

Abstract. Transferability of glacier melt models is necessary for reliable projections of melt over large glacierized regions and over long time-scales. The transferability of such models has been examined for individual model types, but inter-comparison has been hindered by the diversity of validation statistics used to quantify transferability. We apply four common types of melt models – the classical degree-day model, an enhanced temperature-index model, a simplified energy-balance model and a full energy-balance model – to two glaciers in the same small mountain range. The transferability of each model is examined in space and over two melt seasons. We find that the full energy balance model is consistently the most transferable, with deviations in estimated glacier-wide surface ablation of ≤ 35% when the model is forced with parameters derived from the other glacier and/or melt season. The other three models have deviations in glacier-wide surface ablation of ≥ 100% under the same forcings. In addition, we find that there is no simple relationship between model complexity and model transferability.


2020 ◽  
Vol 66 (256) ◽  
pp. 291-302
Author(s):  
Constantijn L. Jakobs ◽  
Carleen H. Reijmer ◽  
C. J. P. Paul Smeets ◽  
Luke D. Trusel ◽  
Willem Jan van de Berg ◽  
...  

AbstractSurface melt on the coastal Antarctic ice sheet (AIS) determines the viability of its ice shelves and the stability of the grounded ice sheet, but very few in situ melt rate estimates exist to date. Here we present a benchmark dataset of in situ surface melt rates and energy balance from nine sites in the eastern Antarctic Peninsula (AP) and coastal Dronning Maud Land (DML), East Antarctica, seven of which are located on AIS ice shelves. Meteorological time series from eight automatic and one staffed weather station (Neumayer), ranging in length from 15 months to almost 24 years, serve as input for an energy-balance model to obtain consistent surface melt rates and energy-balance results. We find that surface melt rates exhibit large temporal, spatial and process variability. Intermittent summer melt in coastal DML is primarily driven by absorption of shortwave radiation, while non-summer melt events in the eastern AP occur during föhn events that force a large downward directed turbulent flux of sensible heat. We use the in situ surface melt rate dataset to evaluate melt rates from the regional atmospheric climate model RACMO2 and validate a melt product from the QuikSCAT satellite.


1994 ◽  
Vol 40 (135) ◽  
pp. 283-292 ◽  
Author(s):  
Richard Heron ◽  
Ming-Ko Woo

AbstractThe decay of a lake-ice cover in the Canadian High Arctic was studied for 2 years. Melt at the upper surface accounted for 75% of the decrease in ice thickness, while 25% occurred at the ice–water interface. An energy-balance model, incorporating density reduction due to internal ice melt, was used to simulate the decay of the ice cover. The overall performance of the model was satisfactory despite periods when computed results differed from the observed ice decay. Energy-balance calculations indicated that the absorption of shortwave radiation within the ice provided 52% of the melt energy while 33 and 15% came from the surface-energy balance and heat flux from the water.


Sign in / Sign up

Export Citation Format

Share Document