scholarly journals Changes in ionic concentrations and δ18O in the snowpack of Zhadang glacier, Nyainqentanglha mountain, southern Tibetan Plateau

2008 ◽  
Vol 49 ◽  
pp. 127-134 ◽  
Author(s):  
Kang Shichang ◽  
Huang Jie ◽  
Xu Yanwei

AbstractTo investigate the effects of depositional and post-depositional processes on chemical records in the snowpack, seven monthly snow pits were sampled at the same site on the pass of Zhadang (ZD) glacier (30˚28.079' N, 90˚39.032' E; 5800ma.s.l.), Nyainqentanglha mountain, southern Tibetan Plateau, between April and October 2006. Meteorological data from an automatic weather station at the sampling site showed that the annual mean air temperature was –5.6˚C on the pass and that monthly air temperature was above 0˚C from June to August, indicating that snowmelt could occur in this high-elevation region during the summer. An analysis of δ18O and major-ion variability in snow pits suggests that glaciochemical recordswere influenced by both meltwater percolation in mid-summer (July and August) and seasonal deposition. Less negative δ18O values and high concentrations of major ions occurred during the spring. The trends of δ18O variations in the ZD snow pits were consistent with those in precipitation sampled at the nearby Nam Co station for all months except for July and August, suggesting that climate signals are well preserved in the snow-pit δ18O records during the non-summer months. However, these climate signals were destroyed by strong percolation of meltwater during mid-summer.

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3660
Author(s):  
Meizhuang Zhu ◽  
Xingxing Kuang ◽  
Yuqing Feng ◽  
Yinlei Hao ◽  
Qiule He ◽  
...  

Spatiotemporal variations of the hydrochemical major ions compositions and their controlling factors are essential features of a river basin. However, similar studies in the southern Tibetan Plateau are relatively limited. This study focuses on the chemical compositions of the dissolved loads in the Lhasa River (LR) in the southern Tibetan Plateau. Two sampling campaigns were conducted during the rainy and dry seasons across the LR basin to systematically investigate the spatiotemporal variations of water chemistry and sources of the dissolved loads. The results show that the river water possesses slight alkalinity with an average pH of 8.05 ± 0.04. Total dissolved solids (TDS) and oxidation-reduction potential (ORP) range widely from 39.8 mg/L to 582.6 mg/L with an average value of 165.6 ± 7.7 mg/L and from −9.4 mV to 295 mV with a mean value of 153.7 ± 6.9 mV, respectively. The major cations follow the decreasing order of Ca2+, Mg2+, Na+, and K+ while HCO3−, SO42−, Cl−, and NO3− for anions. Ca2+ and Mg2+ account for 87.8% of the total cations, while HCO3− and SO42− accounts for 93.9% of the total anions. All the major ions show higher concentrations in the dry season. NO3−, HCO3−, and Mg2+ show significant spatial variations due to the influence of basin lithology and anthropogenic activity. Multi-variables statistical analysis reveals that the mechanisms controlling the LR hydrochemistry are mainly carbonate weathering followed by silicate weathering. Geothermal springs and anthropogenic activities also play crucial roles in altering river water ions composition in the middle stream and downstream. The relatively high NO3− value (3 ± 0.2 mg/L) suggests water quality will be under the threat of pollution with the increase of anthropogenic activities.


Abstract Near-surface air temperature variability and the reliability of temperature extrapolation within glacierized regions are important issues for hydrological and glaciological studies that remain elusive because of the scarcity of high-elevation observations. Based on air temperature data in 2019 collected from 12 automatic weather stations, 43 temperature loggers and 6 national meteorological stations in six different catchments, this study presents air temperature variability in different glacierized/nonglacierized regions and assesses the robustness of different temperature extrapolations to reduce errors in melt estimation. The results show high spatial variability in temperature lapse rates (LRs) in different climatic contexts, with the steepest LRs located on the cold-dry northwestern Tibetan Plateau and the lowest LRs located on the warm-humid monsoonal-influenced southeastern Tibetan Plateau. Near-surface air temperatures in high-elevation glacierized regions of the western and central Tibetan Plateau are less influenced by katabatic winds and thus can be linearly extrapolated from off-glacier records. In contrast, the local katabatic winds prevailing on the temperate glaciers of the southeastern Tibetan Plateau exert pronounced cooling effects on the ambient air temperature, and thus, on-glacier air temperatures are significantly lower than that in elevation-equivalent nonglacierized regions. Consequently, linear temperature extrapolation from low-elevation nonglacierized stations may lead to as much as 40% overestimation of positive degree days, particularly with respect to large glaciers with a long flowline distances and significant cooling effects. These findings provide noteworthy evidence that the different LRs and relevant cooling effects on high-elevation glaciers under distinct climatic regimes should be carefully accounted for when estimating glacier melting on the Tibetan Plateau.


2011 ◽  
Vol 347-353 ◽  
pp. 1005-1011 ◽  
Author(s):  
Yong Jie Yang ◽  
Jun Qing Liu ◽  
Yi An Di ◽  
Jun Yang ◽  
Tian Xue Wen ◽  
...  

Abstract. In order to investigate the chemical characteristics of precipitation on Tibetan Plateau, a total of 34 precipitation samples have been collected from individual precipitation events at the Shigatse Meteorological Station located in the south Tibetan Plateau in 2008. All samples were analyzed for major cations (NH4+, Na+, K+, Ca2+ and Mg2+) and anions (Cl−, NO3− and SO42−), conductivity and pH. The result showed that precipitation pH values ranged from 6.79 to 9.21 with an average value of 7.86. HCO3− and Ca2+ were the major ions detected in the samples, occupied 39% and 35% of the total ion mass, 80% of the total anion mass and 69% of the total cations mass, respectively. Factor analysis indicated that regional crustal dust, lake salt and local combustion products of residents were the main sources of the ionic compositions of precipitation of Shigatse region. Trajectory cluster analysis indicated that 97.1% of the air masses reaching Shigatse originated from the south, which passed through some pollution regions, as southeast Indian, Bangladesh.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenfang Guo ◽  
Letai Yi ◽  
Peng Wang ◽  
Baojun Wang ◽  
Minhui Li

AbstractThe relationship between air temperature and the hospital admission of adult patients with community-acquired pneumonia (CAP) was analyzed. The hospitalization data pertaining to adult CAP patients (age ≥ 18 years) in two tertiary comprehensive hospitals in Baotou, Inner Mongolia Autonomous Region, China from 2014 to 2018 and meteorological data there in the corresponding period were collected. The exposure–response relationship between the daily average temperature and the hospital admission of adult CAP patients was quantified by using a distributed lag non-linear model. A total of 4466 cases of adult patients with CAP were admitted. After eliminating some confounding factors such as relative humidity, wind speed, air pressure, long-term trend, and seasonal trend, a lower temperature was found to be associated with a higher risk of adult CAP. Compared to 21 °C, lower temperature range of 4 to –12 °C was associated with a greater number of CAP hospitalizations among those aged ≥ 65 years, and the highest relative risk (RR) was 2.80 (95% CI 1.15–6.80) at a temperature of − 10 °C. For those < 65 years, lower temperature was not related to CAP hospitalizations. Cumulative lag RRs of low temperature with CAP hospitalizations indicate that the risk associated with colder temperatures appeared at a lag of 0–7 days. For those ≥ 65 years, the cumulative RR of CAP hospitalizations over lagging days 0–5 was 1.89 (95% CI 1.01–3. 56). In brief, the lower temperature had age-specific effects on CAP hospitalizations in Baotou, China, especially among those aged ≥ 65 years.


2013 ◽  
Vol 121 (2) ◽  
pp. 155-172 ◽  
Author(s):  
Jingen Dai ◽  
Chengshan Wang ◽  
Jeremy Hourigan ◽  
Zhijun Li ◽  
Guangsheng Zhuang

2014 ◽  
Vol 10 (1) ◽  
pp. 91-106 ◽  
Author(s):  
E. Dietze ◽  
F. Maussion ◽  
M. Ahlborn ◽  
B. Diekmann ◽  
K. Hartmann ◽  
...  

Abstract. Grain-size distributions offer powerful proxies of past environmental conditions that are related to sediment sorting processes. However, they are often of multimodal character because sediments can get mixed during deposition. To facilitate the use of grain size as palaeoenvironmental proxy, this study aims to distinguish the main detrital processes that contribute to lacustrine sedimentation across the Tibetan Plateau using grain-size end-member modelling analysis. Between three and five robust grain-size end-member subpopulations were distinguished at different sites from similarly–likely end-member model runs. Their main modes were grouped and linked to common sediment transport and depositional processes that can be associated with contemporary Tibetan climate (precipitation patterns and lake ice phenology, gridded wind and shear stress data from the High Asia Reanalysis) and local catchment configurations. The coarse sands and clays with grain-size modes >250 μm and <2 μm were probably transported by fluvial processes. Aeolian sands (~200 μm) and coarse local dust (~60 μm), transported by saltation and in near-surface suspension clouds, are probably related to occasional westerly storms in winter and spring. Coarse regional dust with modes ~25 μm may derive from near-by sources that keep in longer term suspension. The continuous background dust is differentiated into two robust end members (modes: 5–10 and 2–5 μm) that may represent different sources, wind directions and/or sediment trapping dynamics from long-range, upper-level westerly and episodic northerly wind transport. According to this study grain-size end members of only fluvial origin contribute small amounts to mean Tibetan lake sedimentation (19± 5%), whereas local to regional aeolian transport and background dust deposition dominate the clastic sedimentation in Tibetan lakes (contributions: 42 ± 14% and 51 ± 11%). However, fluvial and alluvial reworking of aeolian material from nearby slopes during summer seems to limit end-member interpretation and should be crosschecked with other proxy information. If not considered as a stand-alone proxy, a high transferability to other regions and sediment archives allows helpful reconstructions of past sedimentation history.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maoliang Zhang ◽  
Zhengfu Guo ◽  
Sheng Xu ◽  
Peter H. Barry ◽  
Yuji Sano ◽  
...  

AbstractThe episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.


Sign in / Sign up

Export Citation Format

Share Document