scholarly journals Glacial lake inventory of Bhutan using ALOS data: methods and preliminary results

2011 ◽  
Vol 52 (58) ◽  
pp. 65-71 ◽  
Author(s):  
Jinro Ukita ◽  
Chiyuki Narama ◽  
Takeo Tadono ◽  
Tsutomu Yamanokuchi ◽  
Nobuhiro Tomiyama ◽  
...  

AbstarctThe Advanced Land Observing Satellite (ALOS) is relatively new. Its optical sensors are capable of making high-resolution digital surface models (DSMs). For the first time, the task of constructing a regional-scale inventory of glacial lakes based on ALOS data has been undertaken. This study presents the data-processing methods and the results of validation and analysis on the ALOS-based glacial lake inventory of Bhutan in the Himalaya. The analysis based on GPS measurements taken at Metatshota lake in the Mangde Chu sub-basin, one of the glacial lakes assessed as presenting a potential flood danger, shows a validation estimate of 9.5 m for the location of the ALOS-based polygon, with a root mean square of 11.7 m. A comparison with digitized data from the International Centre for Integrated Mountain Development (ICIMOD) shows that positioning and evaluation of terrain changes can be significantly improved using ALOS data. Preliminary analysis of the glacial lakes in four sub-basins, Mo Chu, Pho Chu, Mangde Chu and Dangme Chu, reveals that the frequency distribution of lake sizes biases towards smaller lakes. Glacial lakes 0.01–0.05km2 in area account for ~55% of the total number and occupy 13% of the total area. Together our results demonstrate the usefulness of high-resolution ALOS data with accurate DSMs for studying glacial lakes. High priority must be given to continuously improving and updating the glacial lake inventory with high-resolution satellite data.

Author(s):  
R. D. Gupta ◽  
M. K. Singh ◽  
S. Snehmani ◽  
A. Ganju

The present research study assesses the accuracy of the SRTM X band DEM with respect to high accuracy photogrammetric Digital Elevation Model (DEM) for parts of the Himalaya. The high resolution DEM was generated for Manali and nearby areas using digital aerial photogrammetric survey data of 40 cm Ground Sampling Distance (GSD) captured through airborne ADS80 pushbroom camera for the first time in Indian Himalayan context. This high resolution DEM was evaluated with Differential Global Positioning System (DGPS) points for accuracy assessment. The ADS80-DEM gave root mean square error (RMSE) of ~<1m and linear error of 1.60 m at 90 % confidence (LE 90) when compared with the DGPS points. The overall RMSE in vertical accuracy was 73.36 m while LE 90 was 75.20 m with regard to ADS80 DEM. It is observed that the accuracy achieved for part of Himalayan region is far less as compared to the values officially claimed. Thus, SRTM X band DEM should be used with due care in mountainous regions of Himalaya.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Owen King ◽  
Atanu Bhattacharya ◽  
Rakesh Bhambri ◽  
Tobias Bolch

AbstractHeterogeneous glacier mass loss has occurred across High Mountain Asia on a multi-decadal timescale. Contrasting climatic settings influence glacier behaviour at the regional scale, but high intra-regional variability in mass loss rates points to factors capable of amplifying glacier recession in addition to climatic change along the Himalaya. Here we examine the influence of surface debris cover and glacial lakes on glacier mass loss across the Himalaya since the 1970s. We find no substantial difference in the mass loss of debris-covered and clean-ice glaciers over our study period, but substantially more negative (−0.13 to −0.29 m w.e.a−1) mass balances for lake-terminating glaciers, in comparison to land-terminating glaciers, with the largest differences occurring after 2000. Despite representing a minor portion of the total glacier population (~10%), the recession of lake-terminating glaciers accounted for up to 32% of mass loss in different sub-regions. The continued expansion of established glacial lakes, and the preconditioning of land-terminating glaciers for new lake development increases the likelihood of enhanced ice mass loss from the region in coming decades; a scenario not currently considered in regional ice mass loss projections.


2020 ◽  
Author(s):  
Huili Chen ◽  
Qiuhua Liang ◽  
Jiaheng Zhao ◽  
Xilin Xia

&lt;p&gt;Glacial lake outburst floods (GLOFs) are one of the major natural hazards in certain populated mountainous areas, e.g. the Himalayan region, which may lead to catastrophic consequences including fatalities. Evaluating the potential socio-economic impact of GLOFs is essential for mitigating the risk of GLOFs and enhancing community resilience. Yet in most of the cases, the impact evaluation of potential GLOFs is confronted with limited data availability and inaccessibility to most of the glacial lakes in the high-altitude areas. This study aims to exploit recent advances in Earth Observation (EO), open-source data from different sources, and high-performance hydrodynamic modelling to innovate an approach for GLOF risk and impact assessment. GLOF scenarios of different glacier dam breach width and depth are designed according to high-resolution aerial imagery and terrain data acquired from unmanned aerial vehicle surveying. High-performance hydrodynamic model supported by open-source multi-resolution data from the latest EO technologies is used to simulate the flood hydrodynamics to provide spatial and temporal flood characteristics. Detailed information on communities and infrastructure systems is collected and processed from multiple sources including OpenStreetMap, Google Earth, and global data products to support impact analysis. The evaluation framework is applied to Tsho Rolpa glacial lake in Nepal, which has been identified as one of the potentially dangerous glacial lakes that may create GLOFs to threaten the downstream communities and infrastructure. According to the simulation results, the worst GLOF scenario can potentially inundate 27 villages, 583 buildings and 20.8 km&lt;sup&gt;2&lt;/sup&gt; of agricultural areas, and pose high risk to 1 airport, 1 hydro power plant, 3 bus stations, and 21 bridges. Additionally, the spatial and temporal flood simulation results, including water depth, flow velocity and flood arrival time may help identify impacted sites and objects, which would be valuable for the development of evacuation plans and early warning systems.&lt;/p&gt;


1985 ◽  
Vol 50 (11) ◽  
pp. 2480-2492 ◽  
Author(s):  
Soňa Přádná ◽  
Dušan Papoušek ◽  
Jyrki Kauppinen ◽  
Sergei P. Belov ◽  
Andrei F. Krupnov ◽  
...  

Fourier transform spectra of the ν2 band of PH3 have been remeasured with 0.0045 cm-1 resolution. Ground state combination differences from these data have been fitted simultaneously with the microwave and submillimeterwave data to determine the ground state spectroscopical parameters of PH3 including the parameters of the Δk = ± 3n interactions. The correlation between the latter parameters has been discussed from the point of view of the existence of two equivalent effective rotational operators which are related by a unitary transformation. The ΔJ = 0, +1, ΔK = 0 (A1 ↔ A2, E ↔ E) rotational transitions in the ν2 and ν4 states have been measured for the first time by using a microwave spectrometer and a radiofrequency spectrometer with acoustic detection.


1991 ◽  
Vol 148 ◽  
pp. 415-420 ◽  
Author(s):  
R. S. Booth ◽  
Th. De Graauw

In this short review we describe recent new observations of millimetre transitions of molecules in selected regions of the Magellanic Clouds. The observations were made using the Swedish-ESO Submillimetre Telescope, SEST, (Booth et al. 1989), the relatively high resolution of which facilitates, for the first time, observations of individual giant molecular clouds in the Magellanic Clouds. We have mapped the distribution of the emission from the two lowest rotational transitions of 12CO and 13CO and hence have derived excitation conditions for the molecule. In addition, we have observed several well-known interstellar molecules in the same regions, thus doubling the number of known molecules in the Large Magellanic Cloud (LMC). The fact that all the observations have been made under controlled conditions with the same telescope enables a reasonable intercomparison of the molecular column densities. In particular, we are able to observe the relative abundances among the different isotopically substituted species of CO.


2021 ◽  
Vol 13 (6) ◽  
pp. 1134
Author(s):  
Anas El-Alem ◽  
Karem Chokmani ◽  
Aarthi Venkatesan ◽  
Lhissou Rachid ◽  
Hachem Agili ◽  
...  

Optical sensors are increasingly sought to estimate the amount of chlorophyll a (chl_a) in freshwater bodies. Most, whether empirical or semi-empirical, are data-oriented. Two main limitations are often encountered in the development of such models. The availability of data needed for model calibration, validation, and testing and the locality of the model developed—the majority need a re-parameterization from lake to lake. An Unmanned aerial vehicle (UAV) data-based model for chl_a estimation is developed in this work and tested on Sentinel-2 imagery without any re-parametrization. The Ensemble-based system (EBS) algorithm was used to train the model. The leave-one-out cross validation technique was applied to evaluate the EBS, at a local scale, where results were satisfactory (R2 = Nash = 0.94 and RMSE = 5.6 µg chl_a L−1). A blind database (collected over 89 lakes) was used to challenge the EBS’ Sentine-2-derived chl_a estimates at a regional scale. Results were relatively less good, yet satisfactory (R2 = 0.85, RMSE= 2.4 µg chl_a L−1, and Nash = 0.79). However, the EBS has shown some failure to correctly retrieve chl_a concentration in highly turbid waterbodies. This particularity nonetheless does not affect EBS performance, since turbid waters can easily be pre-recognized and masked before the chl_a modeling.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Olav Sundnes ◽  
William Ottestad ◽  
Camilla Schjalm ◽  
Peter Lundbäck ◽  
Lars la Cour Poulsen ◽  
...  

Abstract Background Alarmins are considered proximal mediators of the immune response after tissue injury. Understanding their biology could pave the way for development of new therapeutic targets and biomarkers in human disease, including multiple trauma. In this study we explored high-resolution concentration kinetics of the alarmin interleukin-33 (IL-33) early after human trauma. Methods Plasma samples were serially collected from 136 trauma patients immediately after hospital admission, 2, 4, 6, and 8 h thereafter, and every morning in the ICU. Levels of IL-33 and its decoy receptor sST2 were measured by immunoassays. Results We observed a rapid and transient surge of IL-33 in a subset of critically injured patients. These patients had more widespread tissue injuries and a greater degree of early coagulopathy. IL-33 half-life (t1/2) was 1.4 h (95% CI 1.2–1.6). sST2 displayed a distinctly different pattern with low initial levels but massive increase at later time points. Conclusions We describe for the first time early high-resolution IL-33 concentration kinetics in individual patients after trauma and correlate systemic IL-33 release to clinical data. These findings provide insight into a potentially important axis of danger signaling in humans.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1376
Author(s):  
Taigang Zhang ◽  
Weicai Wang ◽  
Tanguang Gao ◽  
Baosheng An

A glacial lake outburst flood (GLOF) is a typical glacier-related hazard in high mountain regions. In recent decades, glacial lakes in the Himalayas have expanded rapidly due to climate warming and glacial retreat. Some of these lakes are unstable, and may suddenly burst under different triggering factors, thus draining large amounts of water and impacting downstream social and economic development. Glacial lakes in the Poiqu River basin, Central Himalayas, have attracted great attention since GLOFs originating there could have a transboundary impact on both China and Nepal, as occurred during the Cirenmaco GLOF in 1981 and the Gongbatongshaco GLOF in 2016. Based on previous studies of this basin, we selected seven very high-risk moraine-dammed lakes (Gangxico, Galongco, Jialongco, Cirenmaco, Taraco, Beihu, and Cawuqudenco) to simulate GLOF propagation at different drainage percentage scenarios (i.e., 25%, 50%, 75%, and 100%), and to conduct hazard assessment. The results show that, when any glacial lake is drained completely or partly, most of the floods will enter Nepal after raging in China, and will continue to cause damage. In summary, 57.5 km of roads, 754 buildings, 3.3 km2 of farmland, and 25 bridges are at risk of damage due to GLOFs. The potentially inundated area within the Chinese part of the Poiqu River basin exceeds 45 km2. Due to the destructive impacts of GLOFs on downstream areas, appropriate and effective measures should be implemented to adapt to GLOF risk. We finally present a paradigm for conducting hazard assessment and risk management. It uses only freely available data and thus is easy to apply.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 320
Author(s):  
Emilio Guirado ◽  
Javier Blanco-Sacristán ◽  
Emilio Rodríguez-Caballero ◽  
Siham Tabik ◽  
Domingo Alcaraz-Segura ◽  
...  

Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.


Sign in / Sign up

Export Citation Format

Share Document