scholarly journals A physically based model of the year-round surface energy and mass balance of debris-covered glaciers

2013 ◽  
Vol 59 (214) ◽  
pp. 327-344 ◽  
Author(s):  
Yves Lejeune ◽  
Jean-Maxime Bertrand ◽  
Patrick Wagnon ◽  
Samuel Morin

AbstractDebris-covered glaciers respond to atmospheric conditions in different ways from debris-free glaciers, due to the presence of debris at the surface during the ablation season and at the snow/ice interface during the accumulation season. Understanding the response of debris-covered glaciers to a variety of meteorological conditions in a physically sound manner is essential to quantify meltwater discharge and to predict their response to climate change. To tackle this issue, we developed the Crocus-DEB model as an adaptation of the detailed snowpack model Crocus, to simulate the energy and mass balance of debris-covered glaciers, including periods when debris is covered by snow. Crocus-DEB was evaluated with data gathered during a field experiment using artificial debris covering the snowpack at Col de Porte, France, with very good results in terms of conductive heat flux, both at the surface and at the interface between the debris and the underlying dense snow taken as a surrogate for ice, with and without snow overlying the debris. The model was also evaluated using field data from the debris-covered glacier Changri Nup, Nepal, Himalaya. This paper introduces the design of the model, its performance and its ability to explore relationships between model parameters, meteorological conditions and the critical debris thickness.

2007 ◽  
Vol 56 (8) ◽  
pp. 1-9 ◽  
Author(s):  
Z. Vojinovic

The fact that the models applied in the ‘water domain’ are far from reality can be attributed to many reasons. In this context, a systematic analysis of uncertainties reflected by the model error can provide insight into the level of confidence in the model results and how to approach estimation of optimal model parameters. This paper discusses the four commonly used approaches for estimation of model parameters and suggests that an alternative complementary modelling approach should be considered in cases where the traditional model calibration gives limited results and particularly in cases where the computationally expensive models are concerned. It treats uncertainty as modelling the total discrepancy between the model and physical process. The proposed approach combines the results from a physically-based model and Support Vector Machine model into the final solution.


Author(s):  
M. SRINIVASAN ◽  
A. KRISHNAN

The hot spot temperature (HST) plays a most important role in the insulation life of the transformer. Ambient temperature and environmental variable factors involved in the top oil temperature (TOT) computations in all transformer thermal models affects insulation lifetime either directly or indirectly. The importance of the ambient temperature in transformer's insulation life, a new semi-physically-based model for the estimation of TOT in transformers has been proposed in this paper. The winding hot-spot temperature can be calculated as function of the TOT that can be estimated by using the ambient temperature, wind velocity and solar heat radiation effect and transformer loading measured data. The estimated TOT is compared with measured data of a distribution transformer in operation. The proposed model has been validated using real data gathered from a 100 MVA power transformer. For a semi-physically-based model to be acceptable, it must have the qualities of: adequacy, accuracy and consistency. We assess model adequacy using the scale: prediction R2, and plot of residuals against fitted values. To assess model consistency, we use: variance inflation factor (VIF) (which measure multicollinearity), condition number. To assess model accuracy we use mean square error, maximum and minimum error values of semi-physically-based model parameters to the existing model parameters.


2019 ◽  
Vol 19 (11) ◽  
pp. 2477-2495
Author(s):  
Ronda Strauch ◽  
Erkan Istanbulluoglu ◽  
Jon Riedel

Abstract. We developed a new approach for mapping landslide hazards by combining probabilities of landslide impacts derived from a data-driven statistical approach and a physically based model of shallow landsliding. Our statistical approach integrates the influence of seven site attributes (SAs) on observed landslides using a frequency ratio (FR) method. Influential attributes and resulting susceptibility maps depend on the observations of landslides considered: all types of landslides, debris avalanches only, or source areas of debris avalanches. These observational datasets reflect the detection of different landslide processes or components, which relate to different landslide-inducing factors. For each landslide dataset, a stability index (SI) is calculated as a multiplicative result of the frequency ratios for all attributes and is mapped across our study domain in the North Cascades National Park Complex (NOCA), Washington, USA. A continuous function is developed to relate local SI values to landslide probability based on a ratio of landslide and non-landslide grid cells. The empirical model probability derived from the debris avalanche source area dataset is combined probabilistically with a previously developed physically based probabilistic model. A two-dimensional binning method employs empirical and physically based probabilities as indices and calculates a joint probability of landsliding at the intersections of probability bins. A ratio of the joint probability and the physically based model bin probability is used as a weight to adjust the original physically based probability at each grid cell given empirical evidence. The resulting integrated probability of landslide initiation hazard includes mechanisms not captured by the infinite-slope stability model alone. Improvements in distinguishing potentially unstable areas with the proposed integrated model are statistically quantified. We provide multiple landslide hazard maps that land managers can use for planning and decision-making, as well as for educating the public about hazards from landslides in this remote high-relief terrain.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 523
Author(s):  
Jacques Piazzola ◽  
William Bruch ◽  
Christelle Desnues ◽  
Philippe Parent ◽  
Christophe Yohia ◽  
...  

Human behaviors probably represent the most important causes of the SARS-Cov-2 virus propagation. However, the role of virus transport by aerosols—and therefore the influence of atmospheric conditions (temperature, humidity, type and concentration of aerosols)—on the spread of the epidemic remains an open and still debated question. This work aims to study whether or not the meteorological conditions related to the different aerosol properties in continental and coastal urbanized areas might influence the atmospheric transport of the SARS-Cov-2 virus. Our analysis focuses on the lockdown period to reduce the differences in the social behavior and highlight those of the weather conditions. As an example, we investigated the contamination cases during March 2020 in two specific French areas located in both continental and coastal areas with regard to the meteorological conditions and the corresponding aerosol properties, the optical depth (AOD) and the Angstrom exponent provided by the AERONET network. The results show that the analysis of aerosol ground-based data can be of interest to assess a virus survey. We found that moderate to strong onshore winds occurring in coastal regions and inducing humid environment and large sea-spray production episodes coincides with smaller COVID-19 contamination rates. We assume that the coagulation of SARS-Cov-2 viral particles with hygroscopic salty sea-spray aerosols might tend to inhibit its viral infectivity via possible reaction with NaCl, especially in high relative humidity environments typical of maritime sites.


Author(s):  
Abderrazzak El Boukili

Purpose – The purpose of this paper is to provide a new three dimension physically based model to calculate the initial stress in silicon germanium (SiGe) film due to thermal mismatch after deposition. We should note that there are many other sources of initial stress in SiGe films or in the substrate. Here, the author is focussing only on how to model the initial stress arising from thermal mismatch in SiGe film. The author uses this initial stress to calculate numerically the resulting extrinsic stress distribution in a nanoscale PMOS transistor. This extrinsic stress is used by industrials and manufacturers as Intel or IBM to boost the performances of the nanoscale PMOS and NMOS transistors. It is now admitted that compressive stress enhances the mobility of holes and tensile stress enhances the mobility of electrons in the channel. Design/methodology/approach – During thermal processing, thin film materials like polysilicon, silicon nitride, silicon dioxide, or SiGe expand or contract at different rates compared to the silicon substrate according to their thermal expansion coefficients. The author defines the thermal expansion coefficient as the rate of change of strain with respect to temperature. Findings – Several numerical experiments have been used for different temperatures ranging from 30 to 1,000°C. These experiments did show that the temperature affects strongly the extrinsic stress in the channel of a 45 nm PMOS transistor. On the other hand, the author has compared the extrinsic stress due to lattice mismatch with the extrinsic stress due to thermal mismatch. The author found that these two types of stress have the same order (see the numerical results on Figures 4 and 12). And, these are great findings for semiconductor industry. Practical implications – Front-end process induced extrinsic stress is used by manufacturers of nanoscale transistors as the new scaling vector for the 90 nm node technology and below. The extrinsic stress has the advantage of improving the performances of PMOSFETs and NMOSFETs transistors by enhancing mobility. This mobility enhancement fundamentally results from alteration of electronic band structure of silicon due to extrinsic stress. Then, the results are of great importance to manufacturers and industrials. The evidence is that these results show that the extrinsic stress in the channel depends also on the thermal mismatch between materials and not only on the material mismatch. Originality/value – The model the author is proposing to calculate the initial stress due to thermal mismatch is novel and original. The author validated the values of the initial stress with those obtained by experiments in Al-Bayati et al. (2005). Using the uniaxial stress generation technique of Intel (see Figure 2). Al-Bayati et al. (2005) found experimentally that for 17 percent germanium concentration, a compressive initial stress of 1.4 GPa is generated inside the SiGe layer.


Author(s):  
B E A Fisher

An assessment of the effects of visible cooling tower plumes on the local environment can be a necessary part of any proposal for a new large industrial process. Predictions of the dispersion of plumes from cooling towers are based on methods developed for chimney emissions. However, the kinds of criteria used to judge the acceptability of cooling tower plumes are different from those used for stack plumes. The frequency of long elevated plumes and the frequency of ground fogging are the two main issues. It is shown that events associated with significant plume visibility are dependent both on the operating characteristics of the tower and on the occurrence of certain meteorological conditions. The dependence on atmospheric conditions is shown to be fairly complex and simple performance criteria based on the exit conditions from the tower are not sufficient for assessments.


2001 ◽  
Vol 47 (156) ◽  
pp. 37-50 ◽  
Author(s):  
Richard Bintanja ◽  
Carleen H. Reijmer

AbstractThis paper addresses the causes of the prevailing meteorological conditions observed over an Antarctic blue-ice area and their effect on the surface mass balance. Over blue-ice areas, net accumulation is zero and ablation occurs mainly through sublimation. Sublimation rates are much higher than over adjacent snowfields. The meteorological conditions favourable for high sublimation rates (warm, dry and gusty) are due to the specific orographic setting of this blue-ice area, with usually a steep upwind mountainous slope causing strong adiabatic heating. Diabatic warming due to radiation, and entrainment of warm air from aloft into the boundary layer augment the warming. The prevailing warm, dry conditions explain roughly 50% of the difference in sublimation, and the different characteristics of blue ice (mainly its lower albedo) the other 50%. Most of the annual sublimation (∼70%) takes place during the short summer (mainly in daytime), with winter ablation being restricted to occasional warm, dry föhn-like events. The additional moisture is effectively removed by entrainment and horizontal advection, which are maximum over the blue-ice area. Low-frequency turbulent motions induced by the upwind mountains enhance the vertical turbulent transports. Strong gusts and high peak wind speeds over blue-ice areas cause high potential snowdrift transports, which can easily remove the total precipitation, thereby maintaining zero accumulation.


Sign in / Sign up

Export Citation Format

Share Document