scholarly journals NEW INSIGHTS ON SOME 6-CHLORO-9H-CARBAZOL DERIVATIVES CONCERNING THEIR IN VITRO ANTIOXIDANT CAPACITY AND IN VIVO CYTOTOXICITY

FARMACIA ◽  
2021 ◽  
Vol 69 (3) ◽  
pp. 475-480
Author(s):  
ALEXANDRA TEODORA BORDEI (TELEHOIU)
2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1125
Author(s):  
Raluca Nicu ◽  
Florin Ciolacu ◽  
Diana E. Ciolacu

Nanocelluloses (NCs), with their remarkable characteristics, have proven to be one of the most promising “green” materials of our times and have received special attention from researchers in nanomaterials. A diversity of new functional materials with a wide range of biomedical applications has been designed based on the most desirable properties of NCs, such as biocompatibility, biodegradability, and their special physicochemical properties. In this context and under the pressure of rapid development of this field, it is imperative to synthesize the successes and the new requirements in a comprehensive review. The first part of this work provides a brief review of the characteristics of the NCs (cellulose nanocrystals—CNC, cellulose nanofibrils—CNF, and bacterial nanocellulose—BNC), as well as of the main functional materials based on NCs (hydrogels, nanogels, and nanocomposites). The second part presents an extensive review of research over the past five years on promising pharmaceutical and medical applications of nanocellulose-based materials, which have been discussed in three important areas: drug-delivery systems, materials for wound-healing applications, as well as tissue engineering. Finally, an in-depth assessment of the in vitro and in vivo cytotoxicity of NCs-based materials, as well as the challenges related to their biodegradability, is performed.


Author(s):  
Julian Alfke ◽  
Uta Kampermann ◽  
Svetlana Kalinina ◽  
Melanie Esselen

AbstractDietary polyphenols like epigallocatechin-3-gallate (EGCG)—which represents the most abundant flavan-3-ol in green tea—are subject of several studies regarding their bioactivity and health-related properties. On many occasions, cell culture or in vitro experiments form the basis of published data. Although the stability of these compounds is observed to be low, many reported effects are directly related to the parent compounds whereas the impact of EGCG degradation and autoxidation products is not yet understood and merely studied. EGCG autoxidation products like its dimers theasinensin A and D, “P2” and oolongtheanin are yet to be characterized in the same extent as their parental polyphenol. However, to investigate the bioactivity of autoxidation products—which would minimize the discrepancy between in vitro and in vivo data—isolation and structure elucidation techniques are urgently needed. In this study, a new protocol to acquire the dimers theasinensin A and D as well as oolongtheanin is depicted, including a variety of spectroscopic and quadrupole time-of-flight high-resolution mass spectrometric (qTOF-HRMS) data to characterize and assign these isolates. Through nuclear magnetic resonance (NMR) spectroscopy, polarimetry, and especially circular dichroism (CD) spectroscopy after enzymatic hydrolysis the complementary atropisomeric stereochemistry of the isolated theasinensins is illuminated and elucidated. Lastly, a direct comparison between the isolated EGCG autoxidation products and the monomer itself is carried out regarding their antioxidant properties featuring Trolox equivalent antioxidant capacity (TEAC) values. These findings help to characterize these products regarding their cellular effects and—which is of special interest in the flavonoid group—their redox properties.


2019 ◽  
Vol 91 ◽  
pp. 19-25 ◽  
Author(s):  
Michele Silveira Coelho ◽  
Sabrine de Araujo Aquino ◽  
Juliana Machado Latorres ◽  
Myriam de las Mercedes Salas-Mellado

2003 ◽  
Vol 177 (1) ◽  
pp. 137-146 ◽  
Author(s):  
L Oziol ◽  
P Faure ◽  
N Bertrand ◽  
P Chomard

Oxidized low density lipoproteins (LDL) are highly suspected of initiating the atherosclerosis process. Thyroid hormones and structural analogues have been reported to protect LDL from lipid peroxidation induced by Cu2+ or the free radical generator 2,2'-azobis-'2-amidinopropane' dihydrochloride in vitro. We have examined the effects of thyroid compounds on macrophage-induced LDL oxidation. Human monocyte-derived macrophages (differentiated U937 cells) were incubated for 24 h with LDL and different concentrations (0-20 microM) of 3,5,3'-triiodo-l -thyronine (T3), 3,5,3',5'-tetraiodo-L-thyronine (T4), 3,3',5'-tri-iodo-l -thyronine (rT3), the T3 acetic derivative (3,5,3'-tri-iodothyroacetic acid; TA3) or L-thyronine (T0) (experiment 1). Cells were also preincubated for 24 h with 1 or 10 microM of the compounds, washed twice, then incubated again for 24 h with LDL (experiment 2). Oxidation was evaluated by measurement of thiobarbituric acid-reactive substances (TBARS) and cell viability by lactate deshydrogenase release. In experiment 1, T0 had no effect, whereas the other compounds decreased LDL TBARS production, but T3 and TA3 were less active than T4 and rT3 (IC50: 11.0 +/- 2.6 and 8.1 +/- 0.8 vs 1.4 +/- 0.5 and 0.9 +/- 0.3 microM respectively). In experiment 2, the compounds at 1 microM had no effect; at 10 microM, T3 and rT3 slightly reduced LDL TBARS production, whereas TA3 and T4 inhibited it by about 50% and 70% respectively. TBARS released by the cells were also highly decreased by T3, T4, rT3 and TA3 in experiment 1, but only by T3 (30%) and T4 (70%) in experiment 2. Cell viability was not affected by the compounds except slightly by TA3 at 10 microM. The data suggested that the physico-chemical antioxidant capacity of thyroid compounds was modulated by their action on the intracellular redox systems of macrophage. Overall cellular effects of T3 led to a reduction of its antioxidant capacity whereas those of T4 increased it. Thus T4 might protect LDL against cellular oxidation in vivo more than T3.


2008 ◽  
Vol 14 (3) ◽  
pp. 912-923 ◽  
Author(s):  
Katie Twigger ◽  
Laura Vidal ◽  
Christine L. White ◽  
Johann S. De Bono ◽  
Shreerang Bhide ◽  
...  
Keyword(s):  

Author(s):  
Baowei Yang ◽  
Yicheng Mei ◽  
Qianhui Li ◽  
Mengyuan Zhang ◽  
Huiling Tang ◽  
...  

There is an urgent need for new antibiotics and alternative strategies to combat bacterial pathogens. Molecular docking, antibacterial evaluation in vitro and in vivo, cytotoxicity assessment and enzyme inhibition analyses were performed. Compound 12 exhibited antimicrobial activity against Staphylococcus aureus (MIC: 4 μg/ml), various clinically isolated strains of MRSA (MIC: 4–16 μg/ml) and Acinetobacter baumannii (MIC: 4 μg/ml) when combined with subinhibitory concentrations of colistin B. Compound 12 (20 mg/kg) yielded mild improvement in survival of methicillin-resistant Staphylococcus aureus (MRSA)-infected mice. Additionally, enzyme inhibition tests showed that compound 12 exhibited inhibitory effects against S. aureus dihydrofolate reductase (105.1 μg/ml) and DNA gyrase (122.8 μg/ml). Compound 12 is a promising antibacterial candidate for further development.


2020 ◽  
Vol 322 ◽  
pp. 126783 ◽  
Author(s):  
Débora P. Moraes ◽  
Jesús Lozano-Sánchez ◽  
Marina L. Machado ◽  
Márcia Vizzotto ◽  
Micheli Lazzaretti ◽  
...  

Blood ◽  
1967 ◽  
Vol 30 (2) ◽  
pp. 176-188 ◽  
Author(s):  
MARTIN J. CLINE

Abstract In order to develop a test system for predicting the response to chemotherapeutic agents, leukocytes from patients with leukemia and leukolymphosarcoma were cultured in vitro and the effect of several drugs on the incorporation of H3-uridine into ribonucleic acid was measured. Cortisol, vincristine and cytosine arabinoside at concentrations near the therapeutic range produced inhibition of H3-uridine incorporation in sensitive leukocytes. The in vitro effects of 6-mercaptopurine and methotrexate were variable. In 39 trials on 25 patients with leukemia or lymphosarcoma, the in vitro test was used successfully to predict the response to treatment with prednisone and vincristine. It was concluded that the in vitro test system can predict the in vivo cytotoxicity of certain drugs for malignant cells, although it cannot be used to predict the likelihood of the induction of remissions with these drugs.


Sign in / Sign up

Export Citation Format

Share Document