Repurposing celecoxib analogues as leads for antibiotics

Author(s):  
Baowei Yang ◽  
Yicheng Mei ◽  
Qianhui Li ◽  
Mengyuan Zhang ◽  
Huiling Tang ◽  
...  

There is an urgent need for new antibiotics and alternative strategies to combat bacterial pathogens. Molecular docking, antibacterial evaluation in vitro and in vivo, cytotoxicity assessment and enzyme inhibition analyses were performed. Compound 12 exhibited antimicrobial activity against Staphylococcus aureus (MIC: 4 μg/ml), various clinically isolated strains of MRSA (MIC: 4–16 μg/ml) and Acinetobacter baumannii (MIC: 4 μg/ml) when combined with subinhibitory concentrations of colistin B. Compound 12 (20 mg/kg) yielded mild improvement in survival of methicillin-resistant Staphylococcus aureus (MRSA)-infected mice. Additionally, enzyme inhibition tests showed that compound 12 exhibited inhibitory effects against S. aureus dihydrofolate reductase (105.1 μg/ml) and DNA gyrase (122.8 μg/ml). Compound 12 is a promising antibacterial candidate for further development.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Atakilt Abebe ◽  
Tizazu Hailemariam

In this work, two complexes of ruthenium(III) ([Ru(phen)2Cl2]Cl·2H2O and [Ru(phen)2(G)Cl]2Cl·H2O) were synthesized from 1,10-phenanthroline alone as well as from both 1,10-phenanthroline and guanide. The synthesis was checked using halide test, conductance measurement, and spectroscopic (ICP-OES, FTIR, and UV/Vis) analysis. Their in vitro antibacterial activities were also investigated on two Gram-positive (Staphylococcus aureus (S. aureus) and methicillin resistant Staphylococcus aureus (MRSA)) and two Gram-negative (Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)) bacteria. These complexes showed wide-range better activities than the commercially available controls (Chloramphenicol and Ciprofloxacin) against even the most drug resistant K. pneumoniae. [Ru(phen)2(G)Cl]2Cl·H2O inhibited S. aureus, MRSA, E. coli, and K. pneumoniae by 17.5%, 27.4%, 16%, and 52%, respectively, better than Chloramphenicol. It also inhibited these pathogens by 5.9%, 5.1%, 2.3%, and 17.2%, respectively, better than Ciprofloxacin. Similarly, [Ru(Phen)2(Cl)2]Cl·2H2O inhibited these pathogens by 11%, 8.7%, 0.1%, and 31.2%, respectively, better than Chloramphenicol. Therefore, after in vivo cytotoxicity investigations, these compounds can be considered as potential antibiotic drugs.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3277
Author(s):  
Yunxing Fu ◽  
Chunqing Leng ◽  
Yuan Fan ◽  
Xia Ma ◽  
Xianghui Li ◽  
...  

Staphylococcus aureus (S. aureus) is a major human pathogen that requires new antibiotics with unique mechanism. A new pleuromutilin derivative, 14-O-[(4,6-Diamino-pyrimidine-2-yl) thioacetyl] mutilin (DPTM), has been synthesized and proved as a potent antibacterial agent using in vitro and in vivo assays. In the present study, DPTM was further in vitro evaluated against methicillin-resistant Staphylococcus aureus (MRSA) isolated from dairy farms and outperformed tiamulin fumarate, a pleuromutilin drug used for veterinary. Moreover, a murine skin wound model caused by MRSA infection was established, and the healing effect of DPTM was investigated. The results showed that DPTM could promote the healing of MRSA skin infection, reduce the bacterial burden of infected skin MRSA and decrease the secretion of IL-6 and TNF-α inflammatory cytokines in plasma. These results provided the basis for further in-depth drug targeted studies of DPTM as a novel antibacterial agent.


2019 ◽  
Author(s):  
Albert Bolatchiev ◽  
Vladimir Baturin ◽  
Igor Bazikov ◽  
Alexander Maltsev ◽  
Elena Kunitsina

ABSTRACTThe aims of this study were: (1) To investigate the activity of recombinant AMPs HNP-1 and hBD-1 in combination with cefotaxime against Staphylococcus aureus clinical strains (MSSA and MRSA) in vitro using checkerboard method; (2) To investigate the activity of HNP-1 and hBD-1 encapsulated in silicon nanoparticles (niosomes) in the treatment of MRSA-infected wound in rats. For this S. aureus clinical strains (MSSA and MRSA) were isolated from patients with diabetic foot infection. Cefotaxime, recombinant HNP-1 and hBD-1 (in all possible combinations with each other) were used for testing by the checkerboard method. Two niosomal topical gels with HNP-1/hBD-1 were prepared to treat MRSA-infected wounds in rats. Gels were administered once a day, the control group – without treatment. Wound healing rate was calculated on the 4th, 9th and 16th days of the experiment and compared using one-way ANOVA with Bonferroni correction. MIC of HNP-1 for MSSA and MRSA was the same – 1 mg/L. MIC of hBD-1 for MSSA and MRSA was also the same – 0.5 mg/L. Topical gels with niosomal HNP-1 (or hBD-1) showed a significantly faster wound healing in comparison with the control. The data obtained open up prospects for use of AMPs encapsulated in silica nanoparticles for the development of new antibiotics.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2319
Author(s):  
Klara Lalouckova ◽  
Lucie Mala ◽  
Petr Marsik ◽  
Eva Skrivanova

Ultra-high performance liquid chromatography/mass spectrometry showed soyasaponin I and the isoflavones daidzein, genistein, and glycitein to be the main components of the methanolic extract of the Korean soybean fermented product doenjang, which is known to be a rich source of naturally occurring bioactive substances, at average contents of 515.40, 236.30, 131.23, and 29.00 ng/mg, respectively. The antimicrobial activity of the methanolic extract of doenjang against nine Staphylococcusaureus strains was determined in vitro by the broth microdilution method to investigate its potential to serve as an alternative antibacterial compound. The results suggest that the extract is an effective antistaphylococcal agent at concentrations of 2048–4096 µg/mL. Moreover, the tested extract also showed the ability to inhibit the growth of both methicillin-sensitive and methicillin-resistant animal and clinical S. aureus isolates. The growth kinetics of the chosen strains of S. aureus at the minimum inhibitory concentration of the methanolic extract of doenjang support the idea that the tested extract acts as an antibacterial compound. To the best of our knowledge, this is the first report on the antistaphylococcal action of the methanolic extract of doenjang thus, additional studies including in vivo testing are necessary to confirm this hypothesis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1125
Author(s):  
Raluca Nicu ◽  
Florin Ciolacu ◽  
Diana E. Ciolacu

Nanocelluloses (NCs), with their remarkable characteristics, have proven to be one of the most promising “green” materials of our times and have received special attention from researchers in nanomaterials. A diversity of new functional materials with a wide range of biomedical applications has been designed based on the most desirable properties of NCs, such as biocompatibility, biodegradability, and their special physicochemical properties. In this context and under the pressure of rapid development of this field, it is imperative to synthesize the successes and the new requirements in a comprehensive review. The first part of this work provides a brief review of the characteristics of the NCs (cellulose nanocrystals—CNC, cellulose nanofibrils—CNF, and bacterial nanocellulose—BNC), as well as of the main functional materials based on NCs (hydrogels, nanogels, and nanocomposites). The second part presents an extensive review of research over the past five years on promising pharmaceutical and medical applications of nanocellulose-based materials, which have been discussed in three important areas: drug-delivery systems, materials for wound-healing applications, as well as tissue engineering. Finally, an in-depth assessment of the in vitro and in vivo cytotoxicity of NCs-based materials, as well as the challenges related to their biodegradability, is performed.


2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


Sign in / Sign up

Export Citation Format

Share Document