scholarly journals Tahapan Desain dan Implementasi Model Machine Learning untuk Sistem Tertanam

2020 ◽  
Vol 12 (2) ◽  
pp. 79-85
Author(s):  
Aminuddin Rizal

machine learning and edge computing currently becomes popular technology used in any discipline. Flexibility and adapt to the problem are the main advantages of its technology. In this paper, we explain step-by-step way to make a lightweight machine learning model especially intended for embedded system application. We use open source machine learning tool called as Weka to design the model. Moreover, we performed a simple stress recognition experiment to make our own dataset for evaluation. We evaluate algorithm complexity and accuracy for different well-known classifier such as support vector machine, simple logistic and hoeffding tree.

2019 ◽  
Vol 15 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Jihui Tang ◽  
Jie Ning ◽  
Xiaoyan Liu ◽  
Baoming Wu ◽  
Rongfeng Hu

<P>Introduction: Machine Learning is a useful tool for the prediction of cell-penetration compounds as drug candidates. </P><P> Materials and Methods: In this study, we developed a novel method for predicting Cell-Penetrating Peptides (CPPs) membrane penetrating capability. For this, we used orthogonal encoding to encode amino acid and each amino acid position as one variable. Then a software of IBM spss modeler and a dataset including 533 CPPs, were used for model screening. </P><P> Results: The results indicated that the machine learning model of Support Vector Machine (SVM) was suitable for predicting membrane penetrating capability. For improvement, the three CPPs with the most longer lengths were used to predict CPPs. The penetration capability can be predicted with an accuracy of close to 95%. </P><P> Conclusion: All the results indicated that by using amino acid position as a variable can be a perspective method for predicting CPPs membrane penetrating capability.</P>


Author(s):  
Monalisa Ghosh ◽  
Chetna Singhal

Video streaming services top the internet traffic surging forward a competitive environment to impart best quality of experience (QoE) to the users. The standard codecs utilized in video transmission systems eliminate the spatiotemporal redundancies in order to decrease the bandwidth requirement. This may adversely affect the perceptual quality of videos. To rate a video quality both subjective and objective parameters can be used. So, it is essential to construct frameworks which will measure integrity of video just like humans. This chapter focuses on application of machine learning to evaluate the QoE without requiring human efforts with higher accuracy of 86% and 91% employing the linear and support vector regression respectively. Machine learning model is developed to forecast the subjective quality of H.264 videos obtained after streaming through wireless networks from the subjective scores.


2020 ◽  
Vol 9 (2) ◽  
pp. 343 ◽  
Author(s):  
Arash Kia ◽  
Prem Timsina ◽  
Himanshu N. Joshi ◽  
Eyal Klang ◽  
Rohit R. Gupta ◽  
...  

Early detection of patients at risk for clinical deterioration is crucial for timely intervention. Traditional detection systems rely on a limited set of variables and are unable to predict the time of decline. We describe a machine learning model called MEWS++ that enables the identification of patients at risk of escalation of care or death six hours prior to the event. A retrospective single-center cohort study was conducted from July 2011 to July 2017 of adult (age > 18) inpatients excluding psychiatric, parturient, and hospice patients. Three machine learning models were trained and tested: random forest (RF), linear support vector machine, and logistic regression. We compared the models’ performance to the traditional Modified Early Warning Score (MEWS) using sensitivity, specificity, and Area Under the Curve for Receiver Operating Characteristic (AUC-ROC) and Precision-Recall curves (AUC-PR). The primary outcome was escalation of care from a floor bed to an intensive care or step-down unit, or death, within 6 h. A total of 96,645 patients with 157,984 hospital encounters and 244,343 bed movements were included. Overall rate of escalation or death was 3.4%. The RF model had the best performance with sensitivity 81.6%, specificity 75.5%, AUC-ROC of 0.85, and AUC-PR of 0.37. Compared to traditional MEWS, sensitivity increased 37%, specificity increased 11%, and AUC-ROC increased 14%. This study found that using machine learning and readily available clinical data, clinical deterioration or death can be predicted 6 h prior to the event. The model we developed can warn of patient deterioration hours before the event, thus helping make timely clinical decisions.


2017 ◽  
Vol 36 (3) ◽  
pp. 267-269 ◽  
Author(s):  
Matt Hall ◽  
Brendon Hall

The Geophysical Tutorial in the October issue of The Leading Edge was the first we've done on the topic of machine learning. Brendon Hall's article ( Hall, 2016 ) showed readers how to take a small data set — wireline logs and geologic facies data from nine wells in the Hugoton natural gas and helium field of southwest Kansas ( Dubois et al., 2007 ) — and predict the facies in two wells for which the facies data were not available. The article demonstrated with 25 lines of code how to explore the data set, then create, train and test a machine learning model for facies classification, and finally visualize the results. The workflow took a deliberately naive approach using a support vector machine model. It achieved a sort of baseline accuracy rate — a first-order prediction, if you will — of 0.42. That might sound low, but it's not untypical for a naive approach to this kind of problem. For comparison, random draws from the facies distribution score 0.16, which is therefore the true baseline.


2021 ◽  
Vol 11 (21) ◽  
pp. 9797
Author(s):  
Solaf A. Hussain ◽  
Nadire Cavus ◽  
Boran Sekeroglu

Obesity or excessive body fat causes multiple health problems and diseases. However, obesity treatment and control need an accurate determination of body fat percentage (BFP). The existing methods for BFP estimation require several procedures, which reduces their cost-effectivity and generalization. Therefore, developing cost-effective models for BFP estimation is vital for obesity treatment. Machine learning models, particularly hybrid models, have a strong ability to analyze challenging data and perform predictions by combining different characteristics of the models. This study proposed a hybrid machine learning model based on support vector regression and emotional artificial neural networks (SVR-EANNs) for accurate recent BFP prediction using a primary BFP dataset. SVR was applied as a consistent attribute selection model on seven properties and measurements, using the left-out sensitivity analysis, and the regression ability of the EANN was considered in the prediction phase. The proposed model was compared to seven benchmark machine learning models. The obtained results show that the proposed hybrid model (SVR-EANN) outperformed other machine learning models by achieving superior results in the three considered evaluation metrics. Furthermore, the proposed model suggested that abdominal circumference is a significant factor in BFP prediction, while age has a minor effect.


2021 ◽  
Author(s):  
Akhil Wilson ◽  
Raji Sukumar ◽  
N. Hemalatha

Abstract The prediction of agriculture yield is the one of the challenging problem in smart farming, we have predicted the yield of rice in the state of Kerala, India with the help of Machine Learning by considering the soil properties, micro climatic condition and area of the rice. Here we have used Decision Tree Regression, Random Forest Regression, Linear Regression, K Nearest Neighbour Regression, Xgboost Regression and Support Vector Regression algorithms in order to predict the rice yield. From the experiments we got KNN regression to be the best with 98.77% accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Choudhary Sobhan Shakeel ◽  
Saad Jawaid Khan ◽  
Beenish Chaudhry ◽  
Syeda Fatima Aijaz ◽  
Umer Hassan

Alopecia areata is defined as an autoimmune disorder that results in hair loss. The latest worldwide statistics have exhibited that alopecia areata has a prevalence of 1 in 1000 and has an incidence of 2%. Machine learning techniques have demonstrated potential in different areas of dermatology and may play a significant role in classifying alopecia areata for better prediction and diagnosis. We propose a framework pertaining to the classification of healthy hairs and alopecia areata. We used 200 images of healthy hairs from the Figaro1k dataset and 68 hair images of alopecia areata from the Dermnet dataset to undergo image preprocessing including enhancement and segmentation. This was followed by feature extraction including texture, shape, and color. Two classification techniques, i.e., support vector machine (SVM) and k -nearest neighbor (KNN), are then applied to train a machine learning model with 70% of the images. The remaining image set was used for the testing phase. With a 10-fold cross-validation, the reported accuracies of SVM and KNN are 91.4% and 88.9%, respectively. Paired sample T -test showed significant differences between the two accuracies with a p < 0.001 . SVM generated higher accuracy (91.4%) as compared to KNN (88.9%). The findings of our study demonstrate potential for better prediction in the field of dermatology.


2020 ◽  
Author(s):  
Charalambos Themistocleous ◽  
Bronte Ficek ◽  
Kimberly Webster ◽  
Dirk-Bart den Ouden ◽  
Argye E. Hillis ◽  
...  

AbstractBackgroundThe classification of patients with Primary Progressive Aphasia (PPA) into variants is time-consuming, costly, and requires combined expertise by clinical neurologists, neuropsychologists, speech pathologists, and radiologists.ObjectiveThe aim of the present study is to determine whether acoustic and linguistic variables provide accurate classification of PPA patients into one of three variants: nonfluent PPA, semantic PPA, and logopenic PPA.MethodsIn this paper, we present a machine learning model based on Deep Neural Networks (DNN) for the subtyping of patients with PPA into three main variants, using combined acoustic and linguistic information elicited automatically via acoustic and linguistic analysis. The performance of the DNN was compared to the classification accuracy of Random Forests, Support Vector Machines, and Decision Trees, as well as expert clinicians’ classifications.ResultsThe DNN model outperformed the other machine learning models with 80% classification accuracy, providing reliable subtyping of patients with PPA into variants and it even outperformed auditory classification of patients into variants by clinicians.ConclusionsWe show that the combined speech and language markers from connected speech productions provide information about symptoms and variant subtyping in PPA. The end-to-end automated machine learning approach we present can enable clinicians and researchers to provide an easy, quick and inexpensive classification of patients with PPA.


2020 ◽  
Author(s):  
Chunbo Kang ◽  
Xubin Li ◽  
Xiaoqian Chi ◽  
Yabin Yang ◽  
Haifeng Shan ◽  
...  

Abstract BACKGROUND Accurate preoperative prediction of complicated appendicitis (CA) could help selecting optimal treatment and reducing risks of postoperative complications. The study aimed to develop a machine learning model based on clinical symptoms and laboratory data for preoperatively predicting CA.METHODS 136 patients with clinicopathological diagnosis of acute appendicitis were retrospectively included in the study. The dataset was randomly divided (94: 42) into training and testing set. Predictive models using individual and combined selected clinical and laboratory data features were built separately. Three combined models were constructed using logistic regression (LR), support vector machine (SVM) and random forest (RF) algorithms. The CA prediction performance was evaluated with Receiver Operating Characteristic (ROC) analysis, using the area under the curve (AUC), sensitivity, specificity and accuracy factors.RESULTS The features of the abdominal pain time, nausea and vomiting, the highest temperature, high sensitivity-CRP (hs-CRP) and procalcitonin (PCT) had significant differences in the CA prediction (P<0.001). The ability to predict CA by individual feature was low (AUC<0.8). The prediction by combined features was significantly improved. The AUC of the three models (LR, SVM and RF) in the training set and the testing set were 0.805, 0.888, 0.908 and 0.794, 0.895, 0.761, respectively. The SVM-based model showed a better performance for CA prediction. RF had a higher AUC in the training set, but its poor efficiency in the testing set indicated a poor generalization ability.CONCLUSIONS The SVM machine learning model applying clinical and laboratory data can well predict CA preoperatively which could assist diagnosis in resource limited settings.


Author(s):  
Madhubala Kamble

Nowadays, standard intake of healthy food is vital for keeping a diet to avoid obesity within the human body . In this paper, we present a totally unique system supported machine learning that automatically performs accurate classification of food images and estimates food attributes. This paper proposes a machine learning model consisting of a support vector machine that classifies food into specific categories within the training a part of the prototype system. The most purpose of the proposed method is to reinforce the accuracy of the pre-training model. The paper designs a prototype system supported the client server network model. The client sends an image detection request and processes it on the server side. The prototype system is meant with three main software components, including a pre-trained support vector machine training module for classification purposes, a text data training module for attribute estimation models, and a server-side module. We experimented with a selection of food categories, each containing thousands of images, and therefore the machine learning training to understand higher classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document