scholarly journals FORMATION OF NANO-AND ULTRAFINE PALLADIUM POWDERS IN THE PRESENCE OF «RED-OX»SYSTEM«TITANIUM (III) - TITANIUM (IV)»

2020 ◽  
Vol 5 (443) ◽  
pp. 21-27
Author(s):  
Bayeshov A.B., ◽  
◽  
Gaipov T.E., ◽  
Bayeshova A.K., ◽  
◽  
...  

The results of studies on the processes of obtaining ultra - and nanodispersed palladium powders from sulphate solutions by a combined chemical and electrochemical method in the presence of a "red-ox" system of titanium (III) - titanium (IV) are presented. It has been shown that when a titanium trivalent sulphate solution is added to a solution containing palladium (II) ions, palladium ions are immediately reduced to elemental state to form a nanodispersed powder. The completeness of the above-mentioned oxidizing-reducing reactions is established on the basis of calculating the equilibrium constant (K), which is 1034 and indicates that trivalent titanium ions completely reduce palladium ions to elemental state. Effect of initial concentration of palladium ions on amount of formed palladium powder with addition of equivalent amount of trivalent titanium ions is investigated. According to the authors, upon reduction of palladium ions, elemental palladium is formed in the atomic state, and over time, the atoms begin to combine with each other. Subsequently, atomic particles are combined into colloidal particles. It has been found that in the absence of coagulants, the colloidal palladium solution is stable for 2-3 hours, and in the presence of gelatin, the stability increases and remains for 36 hours. It was shown that in all experiments powders with spherical particles are formed, the average sizes of which range from 0.116-0.240 microns. Based on the results of the presented studies, a new technology for producing ultra - and nano-sized palladium powders is proposed.

2010 ◽  
Vol 31 (2) ◽  
pp. 68-73 ◽  
Author(s):  
María José Contreras ◽  
Víctor J. Rubio ◽  
Daniel Peña ◽  
José Santacreu

Individual differences in performance when solving spatial tasks can be partly explained by differences in the strategies used. Two main difficulties arise when studying such strategies: the identification of the strategy itself and the stability of the strategy over time. In the present study strategies were separated into three categories: segmented (analytic), holistic-feedback dependent, and holistic-planned, according to the procedure described by Peña, Contreras, Shih, and Santacreu (2008) . A group of individuals were evaluated twice on a 1-year test-retest basis. During the 1-year interval between tests, the participants were not able to prepare for the specific test used in this study or similar ones. It was found that 60% of the individuals kept the same strategy throughout the tests. When strategy changes did occur, they were usually due to a better strategy. These results prove the robustness of using strategy-based procedures for studying individual differences in spatial tasks.


2013 ◽  
Vol 44 (6) ◽  
pp. 380-389 ◽  
Author(s):  
Sabine Förderer ◽  
Christian Unkelbach

Evaluative conditioning (EC) refers to valence changes in neutral stimuli (CSs) through repeated pairing with liked or disliked stimuli (USs). The present study examined the stability of EC effects in the course of 1 week. We investigated how this stability depends on memory for US valence and US identity. We also investigated whether CSs evaluations occurring immediately after conditioning (i.e., evaluative consolidation) are necessary for stable EC effects. Participants showed stable EC effects on direct and indirect measures, independent of evaluations immediately after conditioning. EC effects depended on memory for US valence but not for US identity. And although memory decreased significantly over time, EC effects remained stable. These data suggest that evaluative consolidation is not necessary, and that conditioned preferences and attitudes might persist even when people do not remember the concrete source anymore.


Author(s):  
Rebekah J. Nixon ◽  
Sascha H. Kranen ◽  
Anni Vanhatalo ◽  
Andrew M. Jones

AbstractThe metabolic boundary separating the heavy-intensity and severe-intensity exercise domains is of scientific and practical interest but there is controversy concerning whether the maximal lactate steady state (MLSS) or critical power (synonymous with critical speed, CS) better represents this boundary. We measured the running speeds at MLSS and CS and investigated their ability to discriminate speeds at which $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 was stable over time from speeds at which a steady-state $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 could not be established. Ten well-trained male distance runners completed 9–12 constant-speed treadmill tests, including 3–5 runs of up to 30-min duration for the assessment of MLSS and at least 4 runs performed to the limit of tolerance for assessment of CS. The running speeds at CS and MLSS were significantly different (16.4 ± 1.3 vs. 15.2 ± 0.9 km/h, respectively; P < 0.001). Blood lactate concentration was higher and increased with time at a speed 0.5 km/h higher than MLSS compared to MLSS (P < 0.01); however, pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 did not change significantly between 10 and 30 min at either MLSS or MLSS + 0.5 km/h. In contrast, $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 increased significantly over time and reached $$\dot{V}{\text{O}}_{2\,\,\max }$$ V ˙ O 2 max at end-exercise at a speed ~ 0.4 km/h above CS (P < 0.05) but remained stable at a speed ~ 0.5 km/h below CS. The stability of $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 at a speed exceeding MLSS suggests that MLSS underestimates the maximal metabolic steady state. These results indicate that CS more closely represents the maximal metabolic steady state when the latter is appropriately defined according to the ability to stabilise pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 .


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1877
Author(s):  
Kai-Hung Yang ◽  
Gabriella Lindberg ◽  
Bram Soliman ◽  
Khoon Lim ◽  
Tim Woodfield ◽  
...  

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320–500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320–500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400–500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1141
Author(s):  
Georgia Basina ◽  
Hafsa Khurshid ◽  
Nikolaos Tzitzios ◽  
George Hadjipanayis ◽  
Vasileios Tzitzios

Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids’ surface functionalization in a nonpolar solvent.


1989 ◽  
Vol 155 ◽  
Author(s):  
Wan V. Shih ◽  
Wei-Heng Shih ◽  
Jun Liu ◽  
Ilhan A. Aksay

The stability of a colloidal suspension plays an important role in colloidal processing of materials. The stability of the colloidal fluid phase is especially vital in achieving high green densities. By colloidal fluid phase, we refer to a phase in which colloidal particles are well separated and free to move about by Brownian motion, By controlling parameters such as pH, salt concentration, and surfactants, one can achieve high packing (green) densities in the repulsive regime where the suspension is well dispersed as a colloidal fluid, and low green densities in the attractive regime where the suspensions are flocculated [1,2]. While there is increasing interest in using bimodal suspensions to improve green densities, neither the stability of a binary suspension as a colloidal fluid nor the stability effects on the green densities have been studied in depth as yet. Traditionally, the effect of using bimodal-particle-size distribution has only been considered in terms of geometrical packing developed by Furnas and others [3,4]. This model is a simple packing concept and is used and useful for hard sphere-like repulsive interparticle interactions. With the advances in powder technology, smaller and smaller particles are available for ceramic processing. Thus, the traditional consideration of geometrial packing for the green densities of bimodal suspensions may not be enough. The interaction between particles must be taken into account.


2017 ◽  
Vol 24 (07) ◽  
pp. 1850019
Author(s):  
DING WU-QUAN ◽  
HE JIA-HONG ◽  
WANG LEI ◽  
LIU XIN-MIN ◽  
LI HANG

The study of soil colloids is essential because the stability of soil colloidal particles are important processes of interest to researchers in environmental fields. The strong nonclassical polarization of the adsorbed cations (Na[Formula: see text] and K[Formula: see text] decreased the electric field and the electrostatic repulsion between adjacent colloidal particles. The decrease of the absolute values of surface potential was greater for K[Formula: see text] than for Na[Formula: see text]. The lower the concentration of Na[Formula: see text] and K[Formula: see text] in soil colloids, the greater the electrostatic repulsion between adjacent colloidal particles. The net pressure and the electrostatic repulsion was greater for Na[Formula: see text] than for K[Formula: see text] at the same ion concentration. For K[Formula: see text] and Na[Formula: see text] concentrations higher than 50[Formula: see text]mmol L[Formula: see text] or 100 mmol L[Formula: see text], there was a net negative (or attractive) pressure between two adjacent soil particles. The increasing total average aggregation (TAA) rate of soil colloids with increasing Na[Formula: see text] and K[Formula: see text] concentrations exhibited two stages: the growth rates of TAA increased rapidly at first and then increased slowly and eventually almost negligibly. The critical coagulation concentrations of soil colloids in Na[Formula: see text] and K[Formula: see text] were 91.6[Formula: see text]mmol L[Formula: see text] and 47.8[Formula: see text]mmol L[Formula: see text], respectively, and these were similar to the concentrations at the net negative pressure.


Soft Matter ◽  
2021 ◽  
Author(s):  
Gen Li ◽  
Keliang Wang ◽  
Chunjing Lu

The structure of colloidal particles is one of the factors that significantly affect their properties. Asymmetrical spherical particles with pit structures were prepared by using NH4F to perform wet chemical...


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jingqin Su ◽  
Shuai Zhang ◽  
Huanhuan Ma

PurposeThe purpose of the study is to explore how technological capability and exogenous pressure interactively influence business model (BM) dynamics over time in new technology-based ventures.Design/methodology/approachThe study adopts a longitudinal case study of the BM innovations of a Chinese financial technology venture. The structural approach and temporal bracket are used to analyze and theorize the data.FindingsThe findings indicate that distinct contextual changes impel a firm to refine or abandon existing BMs over time. In different stages, the antecedents interactively influence BM dynamics with three successive patterns, namely pressure dominance, parallel influence and hybrid influence. While both antecedents trigger changes during the initiation and implementation of new BMs, they also serve as the filter and the enabler, respectively, during the ideation and integration of BMs.Research limitations/implicationsThe study inductively develops three propositions regarding the relationship between BM dynamics and its antecedents, which is based on the data collected from one single firm. Future research should test the propositions in other domains and take more cross-level antecedents into consideration.Originality/valueThe study contributes to the nascent research stream of BM dynamics by offering in-depth insights into the interaction of internal and external antecedents and by linking the differentiated roles of antecedents to the BM innovation process. The research offers some practical implications for new technology-based ventures seeking to develop BMs in a fast-changing environment.


Sign in / Sign up

Export Citation Format

Share Document