scholarly journals THE KINETICS OF SELECTIVE HYDRAZINOLYSIS OF MALEIC ACID ON THE ACID CATALYST

2021 ◽  
Vol 2 (446) ◽  
pp. 53-57
Author(s):  
S.A. Dzhumadullaeva ◽  
A.B. Bayeshov ◽  
A.V. Kolesnikov

For the first time, kinetics and the mechanism of the reaction of hydrazinolysis of maleic acid in the presence of cation exchanger resin KU-2-8 in H-form have been studied. The experiments were carried out in a static system in a thermostat glass reactor. It was found that cation exchanger shows high catalytic activity in the studied process - maleic acid conversion was 93%, and maleic hydrazide yield was 90%. The conversion selectivity of maleic acid to maleic hydrazide was 97,8%. The reaction rate was determined from the accumulation of maleic hydrazide. The apparent reaction rate constant (k) was calculated from the second-order reaction rate equation. The effect of initial concentrations of maleic acid and hydrazine hydrate, the temperature on the reaction rate was studied. The first order of maleic acid and hydrazine hydrate is determined. Activation energy of the process found from the Arrhenius dependence is 32,1 kJ/mol. On the basis of kinetic and IR spectroscopic methods, a probable reaction mechanism involving polymer-bound hydrogen ions is proposed.

2013 ◽  
Vol 850-851 ◽  
pp. 82-85
Author(s):  
Zuo You Zhang ◽  
Hui Chen ◽  
Xia Li ◽  
Zhao Hui Yang ◽  
Bao Chen Liang

In the presence of an acid catalyst, PG react reversibly with acetaldehyde to form 2,4-dim-ethyl-1,3-dioxolane (24DMD). The effects of different operational parameters on PG conversion had been analyzed in paper, parameters included temperature, reaction time, amount of catalyst and aqueous acetaldehyde/PG molar ratio. Under optimal condition, 85% conversion of PG in aqueous solution was achieved within 180 min of reaction. The analysis of PG was conducted by gas chromatograph. Furthermore, reaction followed the second-order reaction kinetics, and the reaction rate constant was found to be 29.68min-1.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zulnazri Zulnazri ◽  
Rozanna Dewi ◽  
Sulhatun Sulhatun ◽  
Nasrun Nasrun

The aim of this study was to hydrolyzed cellulose nanocrystals as cellulose-based biomass residues from oil palm by using hydrochloric acid under hydrothermal conditions. The characterization of cellulose nanocrystals was determined by FT-IR spectroscopy and X- ray diffraction. The infrared spectroscopy showed there has been a removal of lignin and hemicellulose in the spectrum. Crystallinity which reaches 78.59% was obtained by hydrolysis using hydrochloric acid catalyst 3 mol/L with a reaction time of 1 hour. Based on the graph of -ln CA/CA0 vs. time obtained that Cellulose nanocrystals forming reaction is of first order. The reaction rate constants to the formation of glucose (k2) is greater than the reaction rate constant to the formation of Cellulose nanocrystals (k1), which indicates that the phase of slow reaction is the reaction of the most influential on the overall reaction rate, the reaction of the formation of Cellulose nanocrystals.


Author(s):  
Olga Długosz ◽  
Julia Matysik ◽  
Wiktoria Matyjasik ◽  
Marcin Banach

Abstract New methods of obtaining products containing enzymes reduce the costs associated with obtaining them, increase the efficiency of processes and stabilize the created biocatalytic systems. In the study a catalytic system containing the enzyme α-amylase immobilized on ZnO nanoparticle and Fe3O4 nanoparticles was created. The efficiency of the processes was obtained with variables: concentrations of enzymes, temperatures and times, to define the best conditions for running the process, for which were determined equilibrium and kinetics of adsorption. The most effective parameters of α-amylase immobilization on metal oxides were determined, obtaining 100.8 mg/g sorption capacity for ZnO and 102.9 mg/g for Fe3O4 nanoparticles. Base on the best parameters, ZnO-α-amylase was investigated as an antimicrobial agent and Fe3O4-α-amylase was tested as a catalyst in the process of starch hydrolysis. As a result of the conducted experiments, it was found that α-amylase immobilized on Fe3O4 nanoparticles maintained high catalytic activity (the reaction rate constant KM = 0.7799 [g/dm3] and the maximum reaction rate Vmax = 8.660 [g/(dm3min)]).


REAKTOR ◽  
2018 ◽  
Vol 18 (03) ◽  
pp. 155 ◽  
Author(s):  
Muhaimin Muhaimin ◽  
Beta Wulan Febriana ◽  
Septian Arfan

Abstract This research aimed to determine the reaction kinetics in the process of hydrolysis of pineapple leaves. The experiment was carried out at the temperature (60, 90, and 120 oC) and variation of acid catalyst concentration (0.1; 0.5 and 1 M) by observation reaction time every 30 min. The kinetics model of hydrolysis reactions of pineapple leaves has shown first order reaction with activation energy value to find the concentration of sulfuric acid successively: 0.1 M; -15420 KJ/mol; 0,5 M; 3173.8 KJ/mol; 1 M; 100.53 KJ/mol. The reaction rate constant which produced the highest glucose level was on the use of sulfuric acid at a concentration of 0.1 M at a temperature of 120 oC with glucose levels produced between 26.366.039 ppm to 155.510.778 ppm with k = 0.0106/min. Keywords: glucose; hydrolysis; kinetic model; pineapple leaves


2001 ◽  
Vol 79 (5-6) ◽  
pp. 621-625 ◽  
Author(s):  
Lorenzo Battaglia ◽  
Francesco Pinna ◽  
Giorgio Strukul

The complex [(dppb)Pt(µ-OH)]2(BF4)2 displays high catalytic activity in the thioacetalization of a variety of aldehydes and ketones with mercaptoethanol under very mild conditions. The reaction rate is greatly enhanced by the addition to the reaction mixture of magnesium perchlorate as drying agent and molar turnovers as high as 9700 can be observed. The effect of different desiccating agents is also reported. The reactivity pattern observed, the similarity with other reactions and NMR spectroscopic investigations confirm the possible role of the complex as Lewis acid catalyst in promoting the reaction.Key words: thioacetalization, catalysis, aldehydes, ketones, platinum complex.


2012 ◽  
Vol 509 ◽  
pp. 65-73 ◽  
Author(s):  
Ya Li Gao ◽  
Shao You Liu ◽  
Fei Zhang ◽  
Qing Ge Feng

S-doped TiO2 nanomaterials (S-TiO2) synthesized by solid state and liquid state reaction route were used for the visible light degradation of Rhodamine B. The results show that at 20°C,pH=5, the rule of pseudo-first-order reaction and high catalytic activity were found in the visible light degradation of RhB on the S-TiO2 nanomaterials and pure TiO2. Within 80 min, the visible light degradation ratio of RhB is 97.9%, which is 6.6 times for pure TiO2. The reaction conditions such as the initial concentration, pH value, the sorts of metal ions, and consumption of catalyst affect the reaction rate constant of S-TiO2 material. The addition of Cu2+ enhances the visible light degradation rate of 28.6%, but Cr3+ decreases greatly the reaction rate of RhB.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


2007 ◽  
Vol 544-545 ◽  
pp. 95-98 ◽  
Author(s):  
Jong Tae Jung ◽  
Jong Oh Kim ◽  
Won Youl Choi

The purpose of this study is to investigate the effect of the operational parameters of the UV intensity and TiO2 dosage for the removal of humic acid and heavy metals. It also evaluated the applicability of hollow fiber microfiltration for the separation of TiO2 particles in photocatalytic microfiltration systems. TiO2 powder P-25 Degussa and hollow fiber microfiltration with a 0.4 μm nominal pore size were used for experiments. Under the conditions of pH 7 and a TiO2 dosage 0.3 g/L, the reaction rate constant (k) for humic acid and heavy metals increased with an increase of the UV intensity in each process. For the UV/TiO2/MF process, the reaction rate constant (k) for humic acid and Cu, with the exception of Cr in a low range of UV intensity, was higher compared to that of UV/TiO2 due to the adsorption of the membrane surface. The reaction rate constant (k) increased as the TiO2 dosage increased in the range of 0.1~0.3 g/L. However it decreased for a concentration over 0.3 g/L of TiO2. For the UV/TiO2/MF process, TiO2 particles could be effectively separated from treated water via membrane rejection. The average removal efficiency for humic acid and heavy metals during the operational time was over 90 %. Therefore, photocatalysis with a membrane is believed to be a viable process for humic acid and heavy metals removal.


1990 ◽  
Vol 95 (D9) ◽  
pp. 13981 ◽  
Author(s):  
Gaunlin Shen ◽  
Masako Suto ◽  
L. C. Lee

2015 ◽  
Vol 713-715 ◽  
pp. 2789-2792
Author(s):  
Huan Yan Xu ◽  
Xue Li ◽  
Yan Li ◽  
Ping Li ◽  
Wei Chao Liu

An active dye, Methyl Orange (MO) was employed as the target pollutant to evaluate the photocatalytic activity of TiO2/schorl composite and the kinetics and thermodynamics of this process was emphasized in this work. Langmuir–Hinshelwood kinetic model was employed for the kinetic studies and the results revealed that the process of MO photocatalytic discoloration by TiO2/schorl composite followed one order reaction kinetic equation under different conditions. The reaction rate constant (k) increased with initial MO concentration decreasing. When the catalyst dosage or solution pH increased,kvalues increased and then decreased. The possible reasons for these phenomena were discussed. Finally, the thermodynamic parameters ΔG, ΔH, ΔSwere obtained by the classical Van't Hoff equation.


Sign in / Sign up

Export Citation Format

Share Document