Effect of centrifugal load on crack path in thin-rimmed and webbed gears

Author(s):  
F. Curà ◽  
A. Mura ◽  
C. Rosso

Thin rimmed and webbed gears are used in particular applications to reduce systems weight. This kind of gears need an accurate and fail safe design. As a matter of fact, a possible failure, due to bending fatigue, consists in crack nucleation and consequent growth, in particular in the tooth root zone. These cracks may propagate through the tooth or through the rim. Crack propagation direction is basically influenced by the wheel geometry parameters, above all the rim thickness. Studies available in literature emphasize three ranges for the backup ratio values, involving different behaviors. These ranges are related to the crack propagation paths; respectively through the tooth, through the rim and in an unforeseeable way. This last uncertainty zone depends on other parameters, related to both geometry and loading conditions. In this work the effect of wheel speed related to the bending load has been investigated. The investigation has been carried out by means of numerical models involving both 2D finite element and extended finite element models (XFEM). Results shows that both crack initiation point and crack propagation path are strongly influenced by centrifugal load; this effect is mainly evident in the uncertainty zone of the backup ratio.

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Yahya Ali Fageehi

This paper presents computational modeling of a crack growth path under mixed-mode loadings in linear elastic materials and investigates the influence of a hole on both fatigue crack propagation and fatigue life when subjected to constant amplitude loading conditions. Though the crack propagation is inevitable, the simulation specified the crack propagation path such that the critical structure domain was not exceeded. ANSYS Mechanical APDL 19.2 was introduced with the aid of a new feature in ANSYS: Smart Crack growth technology. It predicts the propagation direction and subsequent fatigue life for structural components using the extended finite element method (XFEM). The Paris law model was used to evaluate the mixed-mode fatigue life for both a modified four-point bending beam and a cracked plate with three holes under the linear elastic fracture mechanics (LEFM) assumption. Precise estimates of the stress intensity factors (SIFs), the trajectory of crack growth, and the fatigue life by an incremental crack propagation analysis were recorded. The findings of this analysis are confirmed in published works in terms of crack propagation trajectories under mixed-mode loading conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Sha Sha ◽  
Guoxin Zhang

High-pressure hydraulic fracture (HF) is an important part of the safety assessment of high concrete dams. A stress-seepage-damage coupling model based on the finite element method is presented and first applied in HF in concrete dams. The coupling model has the following characteristics: (1) the strain softening behavior of fracture process zone in concrete is considered; (2) the mesh-dependent hardening technique is adopted so that the fracture energy dissipation is not affected by the finite element mesh size; (3) four coupling processes during hydraulic fracture are considered. By the damage model, the crack propagation processes of a 1 : 40 scaled model dam and Koyna dam are simulated. The results are in agreement with experimental and other numerical results, indicating that the damage model can effectively predict the carrying capacity and the crack trajectory of concrete gravity dams. Subsequently, the crack propagation processes of Koyna dam using three notches of different initial lengths are simulated by the damage model and the coupling model. And the influence of HF on the crack propagation path and carrying capacity is studied. The results reveal that HF has a significant influence on the global response of the dam.


2003 ◽  
Vol 76 (2) ◽  
pp. 386-405 ◽  
Author(s):  
Vladamir Kerchman ◽  
Cheng Shaw

Abstract IR thermography was used to measure surface temperature profiles of cylindrical rubber specimens during cyclic compression. A linearized constitutive approach and finite element analysis were used to evaluate heat generation and associated transient temperature fields. Modeled temperatures compared well with the IR measurements. This led to extended simulation efforts on lab fracture samples. IR thermography was used to measure temperature of filled NR and filled SBR specimens during tensile fatigue cut growth tests. Temperature gradients are expected to relate to kinetics of rubber fracture and identify regions within the sample that are undergoing accelerated damage. The following cut growth issues were addressed: 1) crack propagation direction in a non-uniform stress field; 2) crack propagation direction as a function of the angle of initial cuts; 3) initiation of crack branching; and 4) catastrophic failure. The nonlinear coupled mechanical and thermal FEA was used to evaluate the energy dissipation in the non-homogeneous cyclic deformation of cracked samples. Modeled and measured surface temperatures are in good agreement. Accounting for heat build-up ahead of an advancing crack can improve numerical models that quantify fatigue cut growth behavior in rubber compounds.


Author(s):  
Václav Sebera ◽  
Milan Šimek

The objective of the paper is the parametrization and the finite element analysis of mechanical pro­per­ties of a through dovetail joint made with the use of a specific procedure by a 3-axis CNC machine. This corner joint was used for the simulation of the bending load of the joint in the angle plane – by compression, i.e. by pressing the joint together. The deformation fields, the stress distribution, the stiffness and the bending moment of the joints were evaluated. The finite element system ANSYS was used to create two parametric numerical models of the joint. The first one represents an ideal­ly stiff joint – both joint parts have been glued together. The second model includes the contact between the joined parts. This numerical model was used to monitor the response of the joint stiffness to the change of the static friction coefficient. The results of both models were compared both with each other and with similar analyses conducted within the research into ready-to-assemble furniture joints. The results can be employed in the designing of more complex furniture products with higher demands concerning stiffness characteristics, such as furniture for sitting. However, this assumption depends on the correction of the created parametric models by experimental testing.


2004 ◽  
Vol 126 (4) ◽  
pp. 655-663 ◽  
Author(s):  
Z.-Q. Gong ◽  
K. Komvopoulos

Surface cracking in a multi-layered medium due to sliding of a rigid asperity was analyzed using linear elastic fracture mechanics and the finite element method. Overlapping of the crack faces and assumptions about the distributions of surface tractions were avoided by using special contact elements. The main objectives of this study were to obtain solutions for the tensile and shear stress intensity factor (SIF) and to determine the crack propagation path in the first layer due to repetitive sliding. The crack propagation direction was predicted based on the maximum (tensile or shear) SIF range. The effects of the crack length, sliding friction, and crack-face friction on the SIF and crack propagation direction are discussed in the context of finite element solutions. Simulation results demonstrate the effects of crack growth in the elastic surface layer on the accumulation of plastic strain in the elastic-plastic underlying layer and the significance of the crack growth increment on the propagation path. It is shown that the surface crack propagates toward the layer interface at an angle of ∼57° from the original crack plane, independent of the crack growth increment, in fair agreement with experimental observations. Based on the obtained results, a general fatigue approach for surface cracking is derived for multi-layered media subjected to repetitive sliding contact.


2018 ◽  
Vol 22 (1) ◽  
pp. 94-111 ◽  
Author(s):  
Mehdi Ebadi Jamkhaneh ◽  
Mohammad Ali Kafi ◽  
Ali Kheyroddin

This study addresses the experimental behavior of octagonal partially encased composite column under axial and bending load conditions. The complementary study on axial and combined axial–torsional behavior is done through finite element analysis. The main parameters for the experiment part are reinforcement details and failure modes. The six parameters of this analytical analysis include width-to-thickness ratio of flange, transverse links spacing and diameter, welding line arrangements, and different types of retrofit of cross-shaped steel (concrete encasement, use of stiffener plates and transverse links). To verify accuracy of the proposed three-dimensional finite element model, the axial behavior of the numerical models was compared with test specimens. Experimental results of the axial study show that concrete crushing phenomena and local buckling behavior occurred for all specimens under ultimate stage of loading. It should be noted that local buckling behavior occurred after crushing phenomena. The analysis of bending assessment demonstrated that the use of stirrups has no remarkable effect on increasing the effective bending moment strength of octagonal partially encased composite columns. Meanwhile, an equation was developed based on comprehensive parametric study of octagonal partially encased composite column using detailed finite element analyses. Under axial–torsional load conditions, one could conclude that steel shear plates should be placed at the end zones of column to heighten torsional resistance of member. Meanwhile, transverse links were found to exert marginal effect on torsional behavior of octagonal partially encased composite column.


2015 ◽  
Vol 665 ◽  
pp. 173-176 ◽  
Author(s):  
Zdeněk Majer ◽  
Luboš Náhlík ◽  
Pavel Hutař

The particulate composites with glass matrix are widely used in many engineering applications. The mismatch of coefficients of thermal expansion during the fabrication process usually causes the presence of the residual stresses around particles. The influence and the understanding of the effects of residual stresses on the material response is required. The main aim of the present paper was to create a two-dimensional finite element model to analyze the influence of residual stresses on micro-crack behavior of glass and ceramics-based particulate composites. The maximum tangential stress criterion (MTS) was used to predict the direction of the micro-crack propagation. The modelled material was a kind of Low Temperature Co-fired Ceramics (LTCC) containing alumina particles embedded in a glass matrix. The influence of the micro-crack length and magnitude of loading on the micro-crack propagation path were investigated. The finite element software ANSYS was used. Conclusions of this paper can contribute to a better understanding of the propagation of micro-cracks in particulate composites in the field of residual stresses.


1992 ◽  
Vol 19 (3) ◽  
pp. 492-509 ◽  
Author(s):  
Sudip S. Bhattacharjee ◽  
Pierre Léger

The seismic safety of concrete dams is a matter of serious concern around the world. During severe ground motions, the dams are likely to experience cracking due to low tensile resistance of concrete. Several analytical methods have been proposed in the literature for finite element crack propagation analysis of concrete structures. Due to lack of consistent results, and virtually impossible verification because of limited field experience in seismic cracking of concrete dams, the choice of a reliable constitutive model has become a complex task. A review of concrete constitutive models for nonlinear seismic analysis of gravity dams is presented herein. The relative merits of the proposed models have been critically examined. Comparing the theoretical soundness, and the advantages and inconveniences of the different analytical procedures, the nonlinear fracture mechanics model applied with a smeared crack analysis technique appears to be very promising. The present state of knowledge on material fracture parameters under transient conditions has been found to be limited. Review of the past finite element seismic fracture analyses of concrete gravity dams reveals that reliable numerical models for safety evaluation of the structures during severe ground motions have not yet been satisfactorily developed. Key words: gravity dams, constitutive models, fracture mechanics, seismic response, nonlinear analysis, finite element, crack propagation.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 58
Author(s):  
Erfeng Zhao ◽  
Bo Li

Roller compacted concrete (RCC) dams own a large number of horizontal construction layers, which can easily lead to weak joints among layers and generate interlayer joints with different scales to reduce the dam bearing capacity. In this study, extended finite element method (XFEM) is used to simulate crack propagation, the finite element description is first taken on the strong discontinuity. Subsequently, the displacement function of the crack-tip in the quadrilateral element and the geometric determination method of the crack-tip strengthening region are established. Afterwards, the discrete form of the governing equation is derived and the XFEM increment discretization method of the cohesive crack with the crack-tip reinforcement is proposed using the virtual node method to represent the discontinuity of the fracture element. These methods are validated through simulating mixed-mode cracking of one-sided notched asymmetric four-point bending beam. Eventually, the proposed methods are applied to RCC gravity dam to study the development rule and propagation path of the interlayer joints, so as to evaluate the effect of different lengths of the interlayer joints on the dam structural performance. The estimated critical values of dam deformation are helpful to prevent the dam failure during long term operation.


Sign in / Sign up

Export Citation Format

Share Document