scholarly journals A Deep Learning Based System to Predict the Noise (Disturbance) in Audio Files

Author(s):  
Kartik P V S M S ◽  
Jeyakumar G

Generally, people prefer their audio to be with very good clarity. They want no disturbances during any interaction and while listening audio files. Automated systems to remove disturbances in an audio file to bring good clarity real time audio communications are in high demand. In this paper a deep learning model to detect the noises in a given audio file is proposed and it working principle is explained. The proposed model was trained, first, to predict the places of noise in the audio file by a well-defined training set which consists of set of audio files with the interval of clear audio and noise. After training, the proposed model predicts the area of disturbance (noise) in any given audio file using the integrated techniques of deep learning and audio processing, and the results are reported. The prediction accuracy of the model was found 90.50 %.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jiarui Feng ◽  
Jennifer Lee ◽  
Zachary A. Vesoulis ◽  
Fuhai Li

AbstractMortality remains an exceptional burden of extremely preterm birth. Current clinical mortality prediction scores are calculated using a few static variable measurements, such as gestational age, birth weight, temperature, and blood pressure at admission. While these models do provide some insight, numerical and time-series vital sign data are also available for preterm babies admitted to the NICU and may provide greater insight into outcomes. Computational models that predict the mortality risk of preterm birth in the NICU by integrating vital sign data and static clinical variables in real time may be clinically helpful and potentially superior to static prediction models. However, there is a lack of established computational models for this specific task. In this study, we developed a novel deep learning model, DeepPBSMonitor (Deep Preterm Birth Survival Risk Monitor), to predict the mortality risk of preterm infants during initial NICU hospitalization. The proposed deep learning model can effectively integrate time-series vital sign data and fixed variables while resolving the influence of noise and imbalanced data. The proposed model was evaluated and compared with other approaches using data from 285 infants. Results showed that the DeepPBSMonitor model outperforms other approaches, with an accuracy, recall, and AUC score of 0.888, 0.780, and 0.897, respectively. In conclusion, the proposed model has demonstrated efficacy in predicting the real-time mortality risk of preterm infants in initial NICU hospitalization.


2021 ◽  
Vol 13 (10) ◽  
pp. 1919
Author(s):  
Deqi Chen ◽  
Xuedong Yan ◽  
Xiaobing Liu ◽  
Liwei Wang ◽  
Fengxiao Li ◽  
...  

Urban road intersection bottleneck has become an important factor in causing traffic delay and restricting traffic efficiency. It is essential to explore the prediction of the operating performance at intersections in real-time and formulate corresponding strategies to alleviate intersection delay. However, because of the sophisticated intersection traffic condition, it is difficult to capture the intersection traffic Spatio-temporal features by the traditional data and prediction methods. The development of big data technology and the deep learning model provides us a good chance to address this challenge. Therefore, this paper proposes a multi-task fusion deep learning (MFDL) model based on massive floating car data to effectively predict the passing time and speed at intersections over different estimation time granularity. Moreover, the grid model and the fuzzy C-means (FCM) clustering method are developed to identify the intersection area and derive a set of key Spatio-temporal traffic parameters from floating car data. In order to validate the effectiveness of the proposed model, the floating car data from ten intersections of Beijing with a sampling rate of 3s are adopted for the training and test process. The experiment result shows that the MFDL model enables us to capture the Spatio-temporal and topology feature of the traffic state efficiently. Compared with the traditional prediction method, the proposed model has the best prediction performance. The interplay between these two targeted prediction variables can significantly improve prediction accuracy and efficiency. Thereby, this method predicts the intersection operation performance in real-time and can provide valuable insights for traffic managers to improve the intersection’s operation efficiency.


Author(s):  
Tossaporn Santad ◽  
Piyarat Silapasupphakornwong ◽  
Worawat Choensawat ◽  
Kingkarn Sookhanaphibarn

2021 ◽  
Author(s):  
Gaurav Chachra ◽  
Qingkai Kong ◽  
Jim Huang ◽  
Srujay Korlakunta ◽  
Jennifer Grannen ◽  
...  

Abstract After significant earthquakes, we can see images posted on social media platforms by individuals and media agencies owing to the mass usage of smartphones these days. These images can be utilized to provide information about the shaking damage in the earthquake region both to the public and research community, and potentially to guide rescue work. This paper presents an automated way to extract the damaged building images after earthquakes from social media platforms such as Twitter and thus identify the particular user posts containing such images. Using transfer learning and ~6500 manually labelled images, we trained a deep learning model to recognize images with damaged buildings in the scene. The trained model achieved good performance when tested on newly acquired images of earthquakes at different locations and ran in near real-time on Twitter feed after the 2020 M7.0 earthquake in Turkey. Furthermore, to better understand how the model makes decisions, we also implemented the Grad-CAM method to visualize the important locations on the images that facilitate the decision.


2021 ◽  
Author(s):  
Jannes Münchmeyer ◽  
Dino Bindi ◽  
Ulf Leser ◽  
Frederik Tilmann

<p><span>The estimation of earthquake source parameters, in particular magnitude and location, in real time is one of the key tasks for earthquake early warning and rapid response. In recent years, several publications introduced deep learning approaches for these fast assessment tasks. Deep learning is well suited for these tasks, as it can work directly on waveforms and </span><span>can</span><span> learn features and their relation from data.</span></p><p><span>A drawback of deep learning models is their lack of interpretability, i.e., it is usually unknown what reasoning the network uses. Due to this issue, it is also hard to estimate how the model will handle new data whose properties differ in some aspects from the training set, for example earthquakes in previously seismically quite regions. The discussions of previous studies usually focused on the average performance of models and did not consider this point in any detail.</span></p><p><span>Here we analyze a deep learning model for real time magnitude and location estimation through targeted experiments and a qualitative error analysis. We conduct our analysis on three large scale regional data sets from regions with diverse seismotectonic settings and network properties: Italy and Japan with dense networks </span><span>(station spacing down to 10 km)</span><span> of strong motion sensors, and North Chile with a sparser network </span><span>(station spacing around 40 km) </span><span>of broadband stations. </span></p><p><span>We obtained several key insights. First, the deep learning model does not seem to follow the classical approaches for magnitude and location estimation. For magnitude, one would classically expect the model to estimate attenuation, but the network rather seems to focus its attention on the spectral composition of the waveforms. For location, one would expect a triangulation approach, but our experiments instead show indications of a fingerprinting approach. </span>Second, we can pinpoint the effect of training data size on model performance. For example, a four times larger training set reduces average errors for both magnitude and location prediction by more than half, and reduces the required time for real time assessment by a factor of four. <span>Third, the model fails for events with few similar training examples. For magnitude, this means that the largest event</span><span>s</span><span> are systematically underestimated. For location, events in regions with few events in the training set tend to get mislocated to regions with more training events. </span><span>These characteristics can have severe consequences in downstream tasks like early warning and need to be taken into account for future model development and evaluation.</span></p>


2021 ◽  
pp. 132-143
Author(s):  
Akihiro Sugiura ◽  
Yoshiki Itazu ◽  
Kunihiko Tanaka ◽  
Hiroki Takada

2020 ◽  
Vol 12 (12) ◽  
pp. 5074
Author(s):  
Jiyoung Woo ◽  
Jaeseok Yun

Spam posts in web forum discussions cause user inconvenience and lower the value of the web forum as an open source of user opinion. In this regard, as the importance of a web post is evaluated in terms of the number of involved authors, noise distorts the analysis results by adding unnecessary data to the opinion analysis. Here, in this work, an automatic detection model for spam posts in web forums using both conventional machine learning and deep learning is proposed. To automatically differentiate between normal posts and spam, evaluators were asked to recognize spam posts in advance. To construct the machine learning-based model, text features from posted content using text mining techniques from the perspective of linguistics were extracted, and supervised learning was performed to distinguish content noise from normal posts. For the deep learning model, raw text including and excluding special characters was utilized. A comparison analysis on deep neural networks using the two different recurrent neural network (RNN) models of the simple RNN and long short-term memory (LSTM) network was also performed. Furthermore, the proposed model was applied to two web forums. The experimental results indicate that the deep learning model affords significant improvements over the accuracy of conventional machine learning associated with text features. The accuracy of the proposed model using LSTM reaches 98.56%, and the precision and recall of the noise class reach 99% and 99.53%, respectively.


Critical Care ◽  
2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Soo Yeon Kim ◽  
Saehoon Kim ◽  
Joongbum Cho ◽  
Young Suh Kim ◽  
In Suk Sol ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 4017 ◽  
Author(s):  
Dukhwan Yu ◽  
Wonik Choi ◽  
Myoungsoo Kim ◽  
Ling Liu

The problem of Photovoltaic (PV) power generation forecasting is becoming crucial as the penetration level of Distributed Energy Resources (DERs) increases in microgrids and Virtual Power Plants (VPPs). In order to improve the stability of power systems, a fair amount of research has been proposed for increasing prediction performance in practical environments through statistical, machine learning, deep learning, and hybrid approaches. Despite these efforts, the problem of forecasting PV power generation remains to be challenging in power system operations since existing methods show limited accuracy and thus are not sufficiently practical enough to be widely deployed. Many existing methods using long historical data suffer from the long-term dependency problem and are not able to produce high prediction accuracy due to their failure to fully utilize all features of long sequence inputs. To address this problem, we propose a deep learning-based PV power generation forecasting model called Convolutional Self-Attention based Long Short-Term Memory (LSTM). By using the convolutional self-attention mechanism, we can significantly improve prediction accuracy by capturing the local context of the data and generating keys and queries that fit the local context. To validate the applicability of the proposed model, we conduct extensive experiments on both PV power generation forecasting using a real world dataset and power consumption forecasting. The experimental results of power generation forecasting using the real world datasets show that the MAPEs of the proposed model are much lower, in fact by 7.7%, 6%, 3.9% compared to the Deep Neural Network (DNN), LSTM and LSTM with the canonical self-attention, respectively. As for power consumption forecasting, the proposed model exhibits 32%, 17% and 44% lower Mean Absolute Percentage Error (MAPE) than the DNN, LSTM and LSTM with the canonical self-attention, respectively.


Sign in / Sign up

Export Citation Format

Share Document