Identification of immune cell infiltration pattern and related critical genes in metastatic castration-resistant prostate cancer by bioinformatics analysis

2021 ◽  
pp. 1-15
Author(s):  
Caibin Fan ◽  
Wei Lu ◽  
Kai Li ◽  
Chunchun Zhao ◽  
Fei Wang ◽  
...  

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) is the lethal stage of prostate cancer and the main cause of morbidity and mortality, which is also a potential target for immunotherapy. METHOD: In this study, using the Approximate Relative Subset of RNA Transcripts (CIBERSORT) online method, we analysed the immune cell abundance ratio of each sample in the mCRPC dataset. The EdgeR (an R package) was used to classify differentially expressed genes (DEGs). Using the Database for annotation, visualisation and interactive exploration (DAVID) online method, we performed functional enrichment analyses. STRING online database and Cytoscape tools have been used to analyse protein-protein interaction (PPI) and classify hub genes. RESULTS: The profiles of immune infiltration in mCRPC showed that Macrophages M2, Macrophages M0, T cells CD4 memory resting, T cells CD8 and Plasma cells were the main infiltration cell types in mCRPC samples. Macrophage M0 and T cell CD4 memory resting abundance ratios were correlated with clinical outcomes. We identified 1102 differentially expressed genes (DEGs) associated with the above two immune cells to further explore the underlying mechanisms. Enrichment analysis found that DEGs were substantially enriched in immune response, cell metastasis, and metabolism related categories. We identified 20 hub genes by the protein-protein interaction network analysis. Further analysis showed that three critical hub genes, CCR5, COL1A1 and CXCR3, were significantly associated with prostate cancer prognosis. CONCLUSION: Our findings revealed the pattern of immune cell infiltration in mCRPC, and identified the types and genes of immune cells correlated with clinical outcomes. A new theoretical basis for immunotherapy may be given by our results.

2020 ◽  
Author(s):  
J.H.A. Creemers ◽  
M.J. van der Doelen ◽  
S. van Wilpe ◽  
R. Hermsen ◽  
T. Duiveman-de Boer ◽  
...  

ABSTRACTPurposeRadium-223 improves overall survival (OS) in men with bone metastatic castration-resistant prostate cancer (mCRPC). While the exact mechanism behind this survival benefit remains unclear, radium-induced immunological mechanisms might contribute to the OS advantage. We performed a comprehensive evaluation of the immunological changes in mCRPC patients by phenotyping the peripheral blood mononuclear cells (PBMCs) during radium-223 therapy.Experimental DesignIn this prospective, single-arm, exploratory study, PBMCs of 30 mCRPC patients were collected before, during, and after treatment with radium-223. Lymphocyte and monocyte counts were analyzed to get insight into general immune cell trends. Next, we analyzed changes in T cell subsets, myeloid-derived suppressor cells (MDSCs), and immune checkpoint expression using linear regression models. Per subset, the 6-month change (% of baseline) was determined. Bootstrapped 95% confidence intervals were used to measure the degree of uncertainty of our findings.ResultsWe observed a substantial decrease in absolute lymphocyte counts (−0.12 * 10^9 cells/L per injection, 95% CI: -0.143 - -0.102). Simultaneously, an increase was observed in the proportion of T cells that expressed costimulatory (ICOS) or inhibitory (TIM-3, PD-L1, and PD-1) checkpoint molecules. Moreover, the fraction of two immunosuppressive subsets – the regulatory T cells and the monocytic MDSCs – increased throughout treatment. These findings were not more pronounced in patients with an ALP response during therapy.ConclusionImmune cell subsets in patients with mCRPC changed during radium-223 therapy, which warrants further research into the possible immunological consequences of these changes.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11133
Author(s):  
Zhengquan Xu ◽  
Yanhong Ding ◽  
Wei Lu ◽  
Ke Zhang ◽  
Fei Wang ◽  
...  

Metastatic castration-resistant prostate cancer (mCRPC) is the lethal stage and the leading cause of death in prostate cancer patients, among which bone metastasis is the most common site. Here in this article, we downloaded the gene expression data and clinical information from online dataset. We found that prostate cancer metastasis in bone is prone to have higher prostate-specific antigen (PSA) and longer time on first-line androgen receptor signaling inhibitors (ARSI). A total of 1,263 differentially expressed genes (DEGs) were identified and results of functional enrichment analysis indicated the enrichment in categories related to cell migration, cancer related pathways and metabolism. We identified the top 20 hub genes from the PPI network and analyzed the clinical characteristics correlated with these hub genes. Finally, we analyzed the immune cell abundance ratio of each sample in different groups. Our results reveal the different clinical characteristics, the immune cell infiltration pattern in different sites of mCRPC, and identify multiple critical related genes and pathways, which provides basis for individualized treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jeroen H. A. Creemers ◽  
Maarten J. van der Doelen ◽  
Sandra van Wilpe ◽  
Rick Hermsen ◽  
Tjitske Duiveman-de Boer ◽  
...  

BackgroundRadium-223 improves overall survival (OS) in men with bone metastatic castration-resistant prostate cancer (mCRPC). While the exact mechanism behind this survival benefit remains unclear, radium-induced immunological mechanisms might contribute to the OS advantage. We performed a comprehensive evaluation of the immunological changes in mCRPC patients by phenotyping the peripheral blood mononuclear cells (PBMCs) during radium-223 therapy.Materials and MethodsIn this prospective, single-arm, exploratory study, PBMCs of 30 mCRPC patients were collected before, during, and after treatment with radium-223. Lymphocyte and monocyte counts were analyzed to get insight into general immune cell trends. Next, we analyzed changes in T cell subsets, myeloid-derived suppressor cells (MDSCs), and immune checkpoint expression using linear regression models. Per subset, the 6-month change (% of baseline) was determined. Bootstrapped 95% confidence intervals were used to measure the degree of uncertainty of our findings.ResultsWe observed a substantial decrease in absolute lymphocyte counts (-0.12 * 10^9 cells/L per injection, 95% CI: -0.143 - -0.102). Simultaneously, an increase was observed in the proportion of T cells that expressed costimulatory (ICOS) or inhibitory (TIM-3, PD-L1, and PD-1) checkpoint molecules. Moreover, the fraction of two immunosuppressive subsets – the regulatory T cells and the monocytic MDSCs – increased throughout treatment. These findings were not more pronounced in patients with an alkaline phosphatase response during therapy.ConclusionImmune cell subsets in patients with mCRPC changed during radium-223 therapy, which warrants further research into the possible immunological consequences of these changes.


2020 ◽  
Author(s):  
Jukun Song ◽  
Song He ◽  
Wei Wang ◽  
Jiaming Su ◽  
Dongbo Yuan ◽  
...  

Abstract Background Immune infiltration of Prostate cancer (PCa) was highly related to clinical outcomes. However, previous works failed to elucidate the diversity of different immune cell types that make up the function of the immune response system. The aim of the study was to uncover the composition of TIICs in PCa utilizing the CIBERSORT algorithm and further reveal the molecular characteristics of PCa subtypes. Method In the present work, we employed the CIBERSORT method to evaluate the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We analyzed the correlation between immune cell infiltration and clinical information. The tumor-infiltrating immune cells of the TCGA PCa cohort were analyzed for the first time. The fractions of 22 immune cell types were imputed to determine the correlation between each immune cell subpopulation and clinical feature. Three types of molecular classification were identified via R-package of “CancerSubtypes”. The functional enrichment was analyzed in each subtype. The submap and TIDE algorithm were used to predict the clinical response to immune checkpoint blockade, and GDSC was employed to screen chemotherapeutic targets for the potential treatment of PCa. Results In current work, we utilized the CIBERSORT algorithm to assess the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We investigated the correlation between immune cell infiltration and clinical data. The tumor-infiltrating immune cells in the TCGA PCa cohort were analyzed. The 22 immune cells were also calculated to determine the correlation between each immune cell subpopulation and survival and response to chemotherapy. Three types of molecular classification were identified. Each subtype has specific molecular and clinical characteristics. Meanwhile, Cluster I is defined as advanced PCa, and is more likely to respond to immunotherapy. Conclusions Our results demonstrated that differences in immune response may be important drivers of PCa progression and response to treatment. The deconvolution algorithm of gene expression microarray data by CIBERSOFT provides useful information about the immune cell composition of PCa patients. In addition, we have found a subtype of immunopositive PCa subtype and will help to explore the reasons for the poor effect of PCa on immunotherapy, and it is expected that immunotherapy will be used to guide the individualized management and treatment of PCa patients.


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 125-125
Author(s):  
Vivek Narayan ◽  
Julie Barber-Rotenberg ◽  
Joseph Fraietta ◽  
Wei-Ting Hwang ◽  
Simon F. Lacey ◽  
...  

125 Background: Prostate specific membrane antigen (PSMA) is a highly expressed tumor-associated antigen potentially amenable to chimeric antigen receptor-modified T (CAR-T) cell therapy for castration-resistant prostate cancer (CRPC). However, a primary challenge to the success of CAR-T therapy in CRPC is the immunosuppressive microenvironment, characterized by high levels of TGFβ. The immunosuppressive functions of TGFβ can be inhibited in T cells using a dominant negative TGFβ receptor (TGFβRdn), thereby enhancing antitumor immunity. Methods: We conducted a first-in-human phase 1 clinical trial to evaluate the feasibility, safety and preliminary efficacy of PSMA-directed/TGFβ-insensitive CAR-T cells (CART-PSMA-TGFβRdn) in patients with metastatic CRPC (NCT03089203). In a 3+3 dose-escalation design, patients received a single dose of 1-3 x 107/m2 (Cohort 1) or 1-3 x 108/m2 (Cohort 2) CART-PSMA-TGFβRdn cells without lymphodepleting (LD) chemotherapy. In Cohort 3, one patient received 1-3 x 108/m2 CART-PSMA-TGFβRdn cells following a LD chemotherapy regimen of cyclophosphamide and fludarabine (Cy/Flu). In Cohort -3, three patients received 1-3 x 107/m2 CART-PSMA-TGFβRdn cells following Cy/Flu. Patients underwent metastatic tumor biopsies at baseline and on day 10 following treatment. Quantitative PCR of CART-PSMA-TGFβRdn DNA was performed at serial timepoints to evaluate for CAR-T expansion and persistence in peripheral blood and trafficking to target tissues. Multiplex cytokine analysis assessed CART-PSMA-TGFβRdn bioactivity. Results: Ten patients received CART-PSMA-TGFβRdn therapy across dose-level cohorts. All CART-PSMA-TGFβRdn infusion products met target transduction efficiency. Evaluation of CAR-T cellular kinetics demonstrated dose-dependent peripheral blood T cell expansion, as well as tumor tissue trafficking in post-treatment tumor biopsies. At Cohort 2 and above, 5 of 7 treated patients developed grade ≥2 cytokine release syndrome (CRS). Marked increases in inflammatory cytokines (IL-6, IL-15, IL-2, IFNγ) correlated with high-grade CRS events. One grade 5 adverse event (sepsis) occurred in Cohort 3. PSA decline was observed in 6 of 10 patients (median decline -33.2%, range -11.6% to -98.3%), and PSA30 response occurred in 4 of 10 patients (including one patient achieving PSA < 0.1 ng/mL). Conclusions: Adoptive cellular therapy with CART-PSMA-TGFβRdn is safe and feasible in patients with metastatic CRPC. A dose-dependent and lymphodepletion chemotherapy-dependent relationship was observed with CART-PSMA-TGFβRdn cell expansion, cytokine expression, CRS, and anti-tumor effect. Correlative cell trafficking and paired tumor Nanostring analyses will be presented. Future clinical investigations seek to enhance anti-tumor efficacy, while optimizing the therapeutic window. Clinical trial information: NCT03089203.


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. TPS191-TPS191
Author(s):  
Omer Kucuk ◽  
Charles Smith ◽  
Terry Plasse ◽  
Besim Ogretmen ◽  
Shikhar Mehrotra ◽  
...  

TPS191 Background: Opaganib (Yeliva, ABC294640) is a first-in-class, sphingosine kinase-2 (SK2) selective inhibitor, with anticancer, anti-inflammatory and anti-viral activities. SK2, a lipid kinase catalyzes formation of the lipid signaling molecule sphingosine 1-phosphate (S1P). S1P promotes cancer growth, and proliferation and pathological inflammation, including inflammatory cytokine production. Specifically, by inhibiting the SK2 enzyme, opaganib blocks the synthesis of S1P which regulates fundamental biological processes such as cell proliferation, migration, immune cell trafficking and angiogenesis, and are also involved in immune-modulation and suppression of innate immune responses from T cells. Opaganib is a sphingosine-competitive inhibitor of SK2 and also inhibits dihydroceramide desaturase. Opaganib has antitumor activity against human and murine prostate cancer cell lines, and in xenograft (LNCaP) and syngeneic (MycCAP, TRAMP-C1) murine tumor models. In addition to its target effect of reducing sphingosine-1-phosphate, opaganib reduces both MYC and AR proteins through its kinase-blocking and desaturase-inhibiting properties, respectively. Methods: The study is open to patients with mCRPC who have been treated with at least one newer androgen antagonist (abiraterone or enzalutamide) and no prior chemotherapy for castration-resistant disease. Patients who are failing either abiraterone or enzalutamide may enroll, with the addition of opaganib. The trial design includes brief safety lead-in cohort 1a (abiraterone + opaganib 250 mg Q 12hr, 3/3 enrolled) and 1b (enzalutamide + opaganib 250 mg Q 12hr, 3/3 enrolled). These cohorts have been completed without any DLTs. We are now enrolling cohort 2 (abiraterone + opaganib 500 mg Q 12hr, 0/27 enrolled) and cohort 3 (enzalutamide + opaganib 500 mg Q 12hr, 8/27 enrolled). A total of 60 patients will be enrolled and response will be evaluated after 4 cycles (28 days/cycle) using a composite metric based on PSA, bone scan and RECIST measurements per PCWG3 criteria. Safety and tolerability will be monitored, and dose modifications will be allowed. Primary endpoint is disease control (stable disease or better) after 4 cycles. Secondary endpoints include overall survival, radiographic progression-free survival and PSA progression-free survival. Correlative studies include assessment of quality of life (QOL), circulating MDSCs, immune cells and clones with amplified AR or MYC. Supported by NIH grant P01 CA203628. Clinical trial information: NCT04207255.


Sign in / Sign up

Export Citation Format

Share Document