Analysis on dynamical properties of the foil bearing rotor system with the unbalanced magnetic pull

2020 ◽  
Vol 64 (1-4) ◽  
pp. 181-189
Author(s):  
Hao Li ◽  
Haipeng Geng ◽  
Hao Lin ◽  
Sheng Feng

Gas foil bearings (GFBs) are widely used in synchronous motors for their splendid performance in high speed. However, its working principle can produce unbalanced magnetic pull (UMP) between stator and rotor inevitably. Based on the rotor transverse vibration, this paper analysis the influence of UMP on the dynamic behavior of the rotor system supported by GFBs. The results show that the UMP accounts for a higher proportion of the exciting force acting on the rotor system at lower speed range. And the UMP declines with the decrease of nominal clearance. It is found that UMP will advance the critical speed of rotor system. According to the simulation results, the rated speed of synchronous motor is set at 90 000 rpm, and the nominal clearance of GFBs is 8 μm. The experimental results show that the rotor system designed in this paper works stably and achieves the predetermined design goal.

2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987536
Author(s):  
Wenjie Cheng ◽  
Zhikai Deng ◽  
Ling Xiao ◽  
Bin Zhong ◽  
Wenbo Duan

With a 10-kW, 120,000-r/min, ultra-high-speed permanent magnet synchronous motor taken as a prototype, experimental research is conducted on the rotor dynamic behaviours of a three-pad bidirectional gas foil bearing high-speed motor rotor system. Load-carrying properties of the three-pad bidirectional gas foil bearing are analysed, and natural frequencies of conical and parallel whirling modes of the elastically supported rotor are calculated based on an appropriate simplification to the stiffness and damping coefficients of the gas foil bearings. The prototype passes through a 90,000-r/min coast-down experiment. Experiments show that there are violent subsynchronous whirling motions that are evoked by the gas foil bearing–rotor system itself. The cause of shaft orbit drift is analysed, and the corresponding solution is put forward. The theoretical analysis and experimental results can offer a useful reference to the bearing–rotor system design of ultra-high-speed permanent magnet motors and its subsequent dynamic analysis.


Author(s):  
Daejong Kim ◽  
Brian Nicholson ◽  
Lewis Rosado ◽  
Garry Givan

Foil bearings are one type of hydrodynamic air/gas bearings but with a compliant bearing surface supported by structural material that provides stiffness and damping to the bearing. The hybrid foil bearing (HFB) in this paper is a combination of a traditional hydrodynamic foil bearing with externally-pressurized air/gas supply system to enhance load capacity during the start and to improve thermal stability of the bearing. The HFB is more suitable for relatively large and heavy rotors where rotor weight is comparable to the load capacity of the bearing at full speed and extra air/gas supply system is not a major added cost. With 4,448N∼22,240N thrust class turbine aircraft engines in mind, the test rotor is supported by HFB in one end and duplex rolling element bearings in the other end. This paper presents experimental work on HFB with diameter of 102mm performed at the US Air force Research Laboratory. Experimental works include: measurement of impulse response of the bearing to the external load corresponding to rotor’s lateral acceleration of 5.55g, forced response to external subsynchronous excitation, and high speed imbalance response. A non-linear rotordynamic simulation model was also applied to predict the impulse response and forced subsynchronous response. The simulation results agree well with experimental results. Based on the experimental results and subsequent simulations, an improved HFB design is also suggested for higher impulse load capability up to 10g and rotordynamics stability up to 30,000rpm under subsynchronous excitation.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim

This work presents the theoretical and experimental rotordynamic evaluations of a rotor–air foil bearing (AFB) system supporting a large overhung mass for high-speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low-speed tests up to 45 krpm are performed to measure lift-off speed and to check bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from the transient Reynolds equation along with the rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20 krpm and bending mode at 200 krpm. A high-speed test rig is designed to experimentally evaluate the rotor–air foil bearing system. The high-speed tests are operated up to 160 krpm. The vibration spectrum indicates that the rotor–air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small subsynchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates potential capability of the air foil bearings in supporting a shaft with a large overhung mass at high speed.


Author(s):  
Sadanand Kulkarni ◽  
Soumendu Jana

High-speed rotating system development has drawn considerable attention of the researchers, in the recent past. Foil bearings are one of the major contenders for such applications, particularly for high speed and low load rotating systems. In foil bearings, process fluid or air is used as the working medium and no additional lubricant is required. It is known from the published literature that the load capacity of foil bearings depend on the operating speed, viscosity of the medium, clearance, and stiffness of the foil apart from the geometric dimensions of the bearing. In case of foil bearing with given dimensions, clearance governs the magnitude of pressure developed, whereas stiffness dictates the change in radial clearance under the generated pressure. This article deals with the effect of stiffness, clearance, and its interaction on the bump foil bearings load-carrying capacity. For this study, four sets of foil bearings of the same geometry with two levels of stiffness and clearance values are fabricated. Experiments are carried out following two factor-two level factorial design approach under constant load and in each case, the lift-off speed is measured. The experimental output is analyzed using statistical techniques to evaluate the influence of parameters under consideration. The results indicate that clearance has the maximum influence on the lift-off speed/ load-carrying capacity, followed by interaction effect and stiffness. A regression model is developed based on the experimental values and model is validated using error analysis technique.


Author(s):  
Kamal Kumar Basumatary ◽  
Karuna Kalita ◽  
Sashindra K. Kakoty ◽  
Seamus D. Garvey

Abstract The hybrid Gas Foil Bearings combining the Gas Foil Bearing and Active Magnetic Bearing is a possibility for application in high-speed turbomachinery and a few developments have been made in this context. As such, the cost of conventional Gas Foil Bearing increases due to its requirement of precise manufacturing method and the coating material for the top foil and bump foil. In case of Active Magnetic Bearing, the normal electrical arrangement includes a multiplicity of independently controlled current sources usually at least four drives per bearing which increases its cost. Therefore, the hybrid Gas Foil Bearing will have much higher cost. In this work, a new electrical arrangement for the electromagnetic actuators of the hybrid Gas Foil Bearing has been proposed. The new arrangement requires only two drives per bearing and the bias current has been provided (in the same set of windings) through a simple rectifier with small series choke and shunt capacitor. As the number of drives required is less, the proposed bearing will have low cost. Implementing the new approach, the force vectors are achieved using only two current-source drives whereas the usual conventional arrangement requires four such drives. Numerical simulations are performed to explore the capabilities of the low cost bearing.


2020 ◽  
Vol 10 (24) ◽  
pp. 9006
Author(s):  
Yingming Tian ◽  
Yi Chai ◽  
Li Feng

Permanent magnet synchronous motors (PMSM), which are with the advantages of high torque-to-weight ratio and high efficiency, are widely applied in modern industrial systems. However, existing approaches may fail to accurately track the speed trajectory because of the load disturbances. This paper proposes an equivalent and combined control strategy to mitigate the slow time-varying load disturbances and decrease the overshoot for PMSM in full speed range. First, a state observer is proposed to reconstruct the current variables and speed state in the d-q axis. Hence, one can get the speed and position information without the sensors. Then, the disturbance and the load are estimated by the estimating law. Thus, it can reduce the effect of load and disturbances. Further, the PD control is introduced to weaken the overshoot. As a result, the speed trajectory can be more effectively hold both in high speed and low speed. Finally, numerical examples are presented to demonstrate the validity and effectiveness of the proposed estimation scheme and its robustness under different conditions.


1972 ◽  
Vol 94 (3) ◽  
pp. 211-220 ◽  
Author(s):  
L. Licht

Experiments and analysis, reported in detail in references [1] through [5], demonstrated that high-speed rotors, supported by foil bearings, were free from whirl-instability and sensitivity to excitation at frequency equal one half the speed of rotation. It was shown also that the foil bearing could accommodate thermal and geometrical distortions, combining this attribute with excellent wipe-wear characteristics and tolerance of particles. The present investigation was directed toward the solution of two important problems: (a) the reduction of foil bearing length without detriment to rotor performance, and (b) the elimination of the foil-lift system and attainment of multiple start-stops without the aid of external pressurization. A description of experimental methods, which lead to the realization of the foregoing objectives, is given.


1970 ◽  
Vol 92 (4) ◽  
pp. 650-659 ◽  
Author(s):  
L. Licht

A high-speed rotor, supported by gas-lubricated foil bearings, is free from self-excited whirl and displays no loss of load capacity when vibrated at frequency equal half the rotational speed [1]. It is demonstrated here that in addition to tolerance of geometrical imperfections, misalignment, and foreign particles [3, 4], the foil bearing performs well at elevated temperatures and accommodates appreciable temperature gradients. The foil bearing is endowed with superior wipe-wear characteristics, and the flexibility of the foil accounts not only for the stability of the foil bearing but also for its forgiveness with respect to distortion, contamination, and contact.


Author(s):  
Samuel A. Howard ◽  
Luis San Andre´s

Gas foil bearings offer several advantages over traditional bearing types that make them attractive for use in high-speed turbomachinery. They can operate at very high temperatures, require no lubrication supply (oil pumps, seals, etc), exhibit very long life with no maintenance, and once operating airborne, have very low power loss. The use of gas foil bearings in high-speed turbomachinery has been accelerating in recent years, although the pace has been slow. One of the contributing factors to the slow growth has been a lack of analysis tools, benchmarked to measurements, to predict gas foil bearing behavior in rotating machinery. To address this shortcoming, NASA Glenn Research Center (GRC) has supported the development of analytical tools to predict gas foil bearing performance. One of the codes has the capability to predict rotordynamic coefficients, power loss, film thickness, structural deformation, and more. The current paper presents an assessment of the predictive capability of the code, named XLGFBTH©. A test rig at GRC is used as a simulated case study to compare rotordynamic analysis using output from the code to actual rotor response as measured in the test rig. The test rig rotor is supported on two gas foil journal bearings manufactured at GRC, with all pertinent geometry disclosed. The resulting comparison shows that the rotordynamic coefficients calculated using XLGFBTH© represent the dynamics of the system reasonably well, especially as they pertain to predicting critical speeds.


Sign in / Sign up

Export Citation Format

Share Document