A tidal energy harvesting system in point of view of the robotic notation

Author(s):  
Joanna Bijak

To represent energy gathered in energy harvester, it is necessary to simulate movement of the energy harvester parts. The aim of this article is to present a new way to simulate movement of energy harvester in point of view of robotic approach. The power buoy is one of the best examples to show potentiality of modelling such mechanism as robotic chain. In the article two ways of buoy’s motion are presented. As a result it occurs that it is possible to use robots kinematic chain theory to present kinematic chain of energy harvesting system.

Author(s):  
Abbas F. Jasim ◽  
Hao Wang ◽  
Greg Yesner ◽  
Ahmad Safari ◽  
Pat Szary

This study investigated the energy harvesting performance of a piezoelectric module in asphalt pavements through laboratory testing and multi-physics based simulation. The energy harvester module was assembled with layers of Bridge transducers and tested in the laboratory. A decoupled approach was used to study the interaction between the energy harvester and the surrounding pavement. The effects of embedment location, vehicle speed, and temperature on energy harvesting performance were investigated. The analysis findings indicate that the embedment location and vehicle speed affects the resulted power output of the piezoelectric energy harvesting system. The embedment depth of the energy module affects both the magnitude and frequency of stress pulse on top of the energy module induced by tire loading. On the other hand, higher vehicle speed causes greater loading frequency and thus greater power output; the effect of pavement temperature is negligible. The analysis of total power output before reaching fatigue failure of the energy module can be used to determine the optimum embedment location in the asphalt layer. The proposed energy harvesting system provides great potential to generate green energy from waste kinetic energy in roadway pavements. Field study is recommended to verify these findings with long-term performance monitoring of pavement with embedded energy harvesters.


2014 ◽  
Vol 953-954 ◽  
pp. 655-658 ◽  
Author(s):  
Guang Qing Shang ◽  
Hong Bing Wang ◽  
Chun Hua Sun

Energy harvesting system has become one of important areas of ​​research and develops rapidly. How to improve the performance of the piezoelectric vibration energy harvester is a key issue in engineering applications. There are many literature on piezoelectric energy harvesting. The paper places focus on summarizing these literature of mathematical modeling of piezoelectric energy harvesting, ranging from the linear to nonlinear, from early a single mechanical degree to piezoaeroelastic problems.


2018 ◽  
Vol 18 (3) ◽  
pp. 920-933 ◽  
Author(s):  
Suyoung Yang ◽  
Sung-Youb Jung ◽  
Kiyoung Kim ◽  
Peipei Liu ◽  
Sangmin Lee ◽  
...  

In this study, a tunable electromagnetic energy harvesting system, consisting of an energy harvester and energy harvesting circuits, is developed for harnessing energy from low-frequency vibration (below 10 Hz) of a bridge, and the harvesting system is integrated with a wireless fatigue crack detection sensor. The uniqueness of the proposed energy harvesting system includes that (1) the resonance frequencies of the proposed energy harvester can be readily tuned to the resonance frequencies of a host structure, (2) an improved energy harvesting efficiency compared to other electromagnetic energy harvesters is achieved in low-frequency and vibration, and (3) high-efficiency energy harvesting circuits for rectification are developed. Furthermore, the developed energy harvesting system is integrated with an on-site wireless sensor deployed on Yeongjong Grand Bridge in South Korea for online fatigue crack detection. To the best knowledge of the authors, this is the very first study where a series of low-frequency vibration energy harvesting, rectification, and battery charging processes are demonstrated under a real field condition. The field test conducted on Yeongjong Grand Bridge, where fatigue cracks have become of a great concern, shows that the proposed energy harvester can generate a peak voltage of 2.27 V and a root mean square voltage of 0.21 V from 0.18-m/s2 root mean square acceleration at 3.05 Hz. It is estimated the proposed energy harvesting system can harness around 67.90 J for 3 weeks and an average power of 37.42 µW. The battery life of the wireless sensor is expected to extend from 1.5 to 2.2 years. The proposed energy harvesting circuits, composed of the AC–DC and boost-up converters, exhibit up to 50% battery charging efficiency when the voltage generated by the proposed energy harvester is 200 mV or higher. The proposed boost-up converter has a 100 times wider input power range than a conventional boost-up converter with a similar efficiency.


2015 ◽  
Vol 25 (12) ◽  
pp. 1550171 ◽  
Author(s):  
Mattia Coccolo ◽  
Grzegorz Litak ◽  
Jesús M. Seoane ◽  
Miguel A. F. Sanjuán

In this paper, we study the vibrational resonance (VR) phenomenon as a useful mechanism for energy harvesting purposes. A system, driven by a low frequency and a high frequency forcing, can give birth to the vibrational resonance phenomenon, when the two forcing amplitudes resonate and a maximum in amplitude is reached. We apply this idea to a bistable oscillator that can convert environmental kinetic energy into electrical energy, that is, an energy harvester. Normally, the VR phenomenon is studied in terms of the forcing amplitudes or of the frequencies, that are not always easy to adjust and change. Here, we study the VR generated by tuning another parameter that is possible to manipulate when the forcing values depend on the environmental conditions. We have investigated the dependence of the maximum response due to the VR for small and large variations in the forcing amplitudes and frequencies. Besides, we have plotted color coded figures in the space of the two forcing amplitudes, in which it is possible to appreciate different patterns in the electrical power generated by the system. These patterns provide useful information on the forcing amplitudes in order to produce the optimal electrical power.


2021 ◽  
Vol 11 (21) ◽  
pp. 9979
Author(s):  
Ying Zhang ◽  
Xiaxia Duan ◽  
Yu Shi ◽  
Xiaole Yue

In the stage of modelling, measuring, mechanical processing and manufacturing of the nonlinear energy harvesting system, deviations and errors of system parameters are inevitable. Even slight variation of key parameters may have a significant influence on the output voltages, especially for the multi-stable nonlinear case. Therefore, the investigation of dynamic behaviors for the tristable energy harvesting system with uncertain parameters is of important value both for research and application. In this paper, the uncertainty of a tristable piezoelectric vibration energy harvester with a random coefficient ahead of the nonlinear term is studied. By using the Chebyshev polynomial approximation, this tristable energy harvesting system is first reduced into an equivalent deterministic form, the ensemble mean responses of which are derived to exhibit the stochastic behaviors. The periodic and chaotic motions, bifurcations and crises under different conditions are analyzed. The results show that the output voltage is sensitive to the uncertainty of the nonlinear coefficient, which leads to unstable behavior around the bifurcation and crisis points particularly. Exploring the influence pattern of uncertain parameters on the output voltage and avoiding the unstable parameter intervals are essential for optimizing the structure. It can further improve the efficiency of the nonlinear energy harvesting system.


Author(s):  
Jianyong Zuo ◽  
Jie Yu ◽  
Cheng Liu ◽  
Yihao Gu ◽  
Lei Zuo ◽  
...  

Abstract Railroad vibration energy harvester has been researched and developed to harness the energy from the vibration of railway track when the trains pass. The vibrational energy could be transformed into electrical energy using mechanical motion rectification (MMR) mechanism and then further be used to power trackside equipment including sensors and some smart electrical devices. In order to test the performance of the MMR railroad energy harvesting system, a series of infield tests were conducted with a self-developed distributed measurement system in Railroad Test Lab at Tongji University. A 10V peak voltage was achieved with 8 Ohms external resistive load at the train speed of 30 km/h, which was consistent with the result of in-lab bench tests. In addition, some experience of design and installation for the motioned based energy harvesting system was gained, which can provide some references for the future improvement of railroad energy harvesting systems.


2015 ◽  
Vol 0 (0) ◽  
Author(s):  
Viktor Hofmann ◽  
Gleb Kleyman ◽  
Jens Twiefel

AbstractIn this article the modeling of a broadband energy harvester utilizing piezoelectric and electromagnetic effects for rotational applications is presented. The hybrid energy harvester consists of a one-side-clamped piezoelectric bimorph with a solenoid on the free end and is excited periodically but non-harmonically by magnets that are fixed on a rotating object. To estimate and describe the performance of the energy harvester concept a linear semi-analytical model for the bimorph and the solenoid is developed and then enhanced for non-harmonic system oscillations by decomposing them into their harmonic components. A comparison between the calculated and measurement signals of a prototype device shows great conformity. According to model-based and experimental analysis, the hybrid system has good broadband behavior regarding electric power output. That aspect makes the device a perfect energy-harvesting system for application with highly fluctuating revolution speeds like miniature wind turbines.


Author(s):  
Brennan E. Yamamoto ◽  
A. Zachary Trimble

As the required power for wireless, low-power sensor systems continues to decrease, the feasibility of a fully self-sustaining, onboard power supply, has increased interest in the field of vibration energy harvesting — where ambient kinetic energy is scavenged from the surrounding environment. Current literature has produced a number of harvesting techniques and transduction methods; however, they are all fundamentally similar in that, the harmonic excitation frequency must fall within the resonant bandwidth frequency of the harvesting mechanism to maintain acceptable energy output. The purpose of this research is to investigate the potential for natural frequency tuning by means of passive electrical components, that is, using an imposed electrical inductance to adjust the equivalent stiffness, and resulting resonant frequency of a vibration energy harvester. In past literature, it was concluded that an “active” frequency tuning mechanism would be infeasible, as the power required by an equivalent “stiffening transducer” would require more power to maintain the system at resonance, than the system would actually produce as a result of maintaining resonance, i.e., a net energy loss (Roundy and Zhang 2005). It is believed that the model used in this conclusion can be improved by directly modeling changes in system stiffness as an equivalent mechanical spring, instead of an external inertial loading. Due to the conservative nature of the harmonic spring, the compliance of a harvesting mechanism can be theoretically altered without energy losses, whether the actuation is applied using “active” or “passive” means. This revised model departs from the traditional, base excitation model in most vibration energy harvesting systems, and includes additional stiffness, and damping elements, representative of induced mechanical spring, and related losses. We can validate the feasibility of this technique, if it can be shown that the natural frequency of an energy harvester can be altered, and still maintain energy output similar to its “untuned” natural frequency. If feasible, this tuning method would provide a viable alternative to other bandwidth-increasing techniques in literature, e.g., wideband harvesting, bandwidth normalizing, high-damping, etc. In this research, a change in natural frequency of the experimental energy harvesting system of 0.5 Hz was demonstrated, indicating that adjusting the natural frequency of a vibration energy harvesting system is possible; however, there are many new challenges associated with the revised energy harvesting model, related to the new introduced losses to the system, as well as impedance matching between the mechanical and electrical domains. Further research is required to better quantitatively characterize the relationship between natural frequency shift, and imposed electrical inductance.


2017 ◽  
Vol 5 (1) ◽  
pp. 1-5
Author(s):  
Bharat Mishra ◽  
Akhilesh Tiwari ◽  
Pankaj Agrawal

In present era several companies and research groups are developing enhanced technologies which help to increase the operating lifetime of battery used in wireless sensor devices. Energy harvesting from ambient radio frequency becomes an attractive and trendy solution for energizing the devices of wireless sensor networks. Abundant availability of RF power from number of cell phone towers, Wi-Fi networks and DTH transmitters ensure that ample amount of power may be harvested from ISM band and after RF to DC conversion used in various low power applications. In this paper a thorough review on existing techniques of various RF power harvesting circuit comprised of different RF to DC converter and matching network with their characteristics and applications is presented. The possibility of harvesting circuit is also explored. Authors also discussed various design issues for developing the RF energy harvester.


Sign in / Sign up

Export Citation Format

Share Document