scholarly journals Non-static surfaces in MCNPX: The chopper extension1

2020 ◽  
Vol 22 (2-3) ◽  
pp. 191-198
Author(s):  
Kyle B. Grammer ◽  
Franz X. Gallmeier ◽  
Erik B. Iverson

Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal.

Author(s):  
Hans-Jürgen Reinhardt ◽  
Dinh Nho Hao

Abstract In this contribution we propose new numerical methods for solving inverse heat conduction problems. The methods are constructed by considering the desired heat flux at the boundary as piecewise constant (in time) and then deriving an explicit expression for the solution of the equation for a stationary point of the minimizing functional. In a very special case the well-known Beck method is obtained. For the time being, numerical tests could not be included in this contribution but will be presented in a forthcoming paper.


2021 ◽  
Vol 38 (1) ◽  
pp. 015001
Author(s):  
Yanan Zhao ◽  
Chunlin Wu ◽  
Qiaoli Dong ◽  
Yufei Zhao

Abstract We consider a wavelet based image reconstruction model with the ℓ p (0 < p < 1) quasi-norm regularization, which is a non-convex and non-Lipschitz minimization problem. For solving this model, Figueiredo et al (2007 IEEE Trans. Image Process. 16 2980–2991) utilized the classical majorization-minimization framework and proposed the so-called Isoft algorithm. This algorithm is computationally efficient, but whether it converges or not has not been concluded yet. In this paper, we propose a new algorithm to accelerate the Isoft algorithm, which is based on Nesterov’s extrapolation technique. Furthermore, a complete convergence analysis for the new algorithm is established. We prove that the whole sequence generated by this algorithm converges to a stationary point of the objective function. This convergence result contains the convergence of Isoft algorithm as a special case. Numerical experiments demonstrate good performance of our new algorithm.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Bui Van Dinh ◽  
Le Dung Muu

We consider bilevel pseudomonotone equilibrium problems. We use a penalty function to convert a bilevel problem into one-level ones. We generalize a pseudo-∇-monotonicity concept from∇-monotonicity and prove that under pseudo-∇-monotonicity property any stationary point of a regularized gap function is a solution of the penalized equilibrium problem. As an application, we discuss a special case that arises from the Tikhonov regularization method for pseudomonotone equilibrium problems.


1998 ◽  
Vol 31 (6) ◽  
pp. 841-844 ◽  
Author(s):  
P. Thiyagarajan ◽  
R. K. Crawford ◽  
D. F. R. Mildner

The neutron transmission probability through a single-crystal MgO filter has been measured at both liquid-nitrogen (77 K) and room (300 K) temperatures, as a function of wavelength, using a pulsed neutron source. The data show that a cooled MgO filter is superior to room-temperature sapphire for both thermal and cold neutrons, principally because the absorption probability is reduced by a factor of three at long wavelengths.


Author(s):  
J. F. C. Kingman

The class of stationary point processes known as ‘doubly stochastic Poisson processes’ was introduced by Cox (2) and has been studied in detail by Bartlett (1). It is not clear just how large this class is, and indeed it seems to be a problem of some difficulty to decide of a general stationary point process whether or not it can be represented as a doubly stochastic Poisson process. (A few simple necessary conditions are known. For instance, Cox pointed out in the discussion to (1) that a double stochastic Poisson process must show more ‘dispersion’ than the Poisson process. Such conditions are very far from being sufficient.) The main result of the present paper is a solution of the problem for the special case of a renewal process, justifying an assertion made in the discussion to (1).


2018 ◽  
Vol 41 ◽  
Author(s):  
Daniel Crimston ◽  
Matthew J. Hornsey

AbstractAs a general theory of extreme self-sacrifice, Whitehouse's article misses one relevant dimension: people's willingness to fight and die in support of entities not bound by biological markers or ancestral kinship (allyship). We discuss research on moral expansiveness, which highlights individuals’ capacity to self-sacrifice for targets that lie outside traditional in-group markers, including racial out-groups, animals, and the natural environment.


Author(s):  
Akira Tanaka ◽  
David F. Harling

In the previous paper, the author reported on a technique for preparing vapor-deposited single crystal films as high resolution standards for electron microscopy. The present paper is intended to describe the preparation of several high resolution standards for dark field microscopy and also to mention some results obtained from these studies. Three preparations were used initially: 1.) Graphitized carbon black, 2.) Epitaxially grown particles of different metals prepared by vapor deposition, and 3.) Particles grown epitaxially on the edge of micro-holes formed in a gold single crystal film.The authors successfully obtained dark field micrographs demonstrating the 3.4Å lattice spacing of graphitized carbon black and the Au single crystal (111) lattice of 2.35Å. The latter spacing is especially suitable for dark field imaging because of its preparation, as in 3.), above. After the deposited film of Au (001) orientation is prepared at 400°C the substrate temperature is raised, resulting in the formation of many square micro-holes caused by partial evaporation of the Au film.


Author(s):  
L. E. Murr ◽  
G. Wong

Palladium single-crystal films have been prepared by Matthews in ultra-high vacuum by evaporation onto (001) NaCl substrates cleaved in-situ, and maintained at ∼ 350° C. Murr has also produced large-grained and single-crystal Pd films by high-rate evaporation onto (001) NaCl air-cleaved substrates at 350°C. In the present work, very large (∼ 3cm2), continuous single-crystal films of Pd have been prepared by flash evaporation onto air-cleaved (001) NaCl substrates at temperatures at or below 250°C. Evaporation rates estimated to be ≧ 2000 Å/sec, were obtained by effectively short-circuiting 1 mil tungsten evaporation boats in a self-regulating system which maintained an optimum load current of approximately 90 amperes; corresponding to a current density through the boat of ∼ 4 × 104 amperes/cm2.


Author(s):  
D. J. Barber ◽  
R. G. Evans

Manganese (II) oxide, MnO, in common with CoO, NiO and FeO, possesses the NaCl structure and shows antiferromagnetism below its Neel point, Tn∼ 122 K. However, the defect chemistry of the four oxides is different and the magnetic structures are not identical. The non-stoichiometry in MnO2 small (∼2%) and below the Tn the spins lie in (111) planes. Previous work reported observations of magnetic features in CoO and NiO. The aim of our work was to find explanations for certain resonance results on antiferromagnetic MnO.Foils of single crystal MnO were prepared from shaped discs by dissolution in a mixture of HCl and HNO3. Optical microscopy revealed that the etch-pitted foils contained cruciform-shaped precipitates, often thick and proud of the surface but red-colored when optically transparent (MnO is green). Electron diffraction and probe microanalysis indicated that the precipitates were Mn2O3, in contrast with recent findings of Co3O4 in CoO.


Sign in / Sign up

Export Citation Format

Share Document