FERTIGATION FOR CITRUS TREES

EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Mongi Zekri ◽  
Arnold Schumann ◽  
Tripti Vashisth ◽  
Davie Kadyampakeni ◽  
Kelly T. Morgan ◽  
...  

Microirrigation is an important component of citrus production systems in Florida. For citrus trees, microirrigation is more desirable than other irrigation methods for several reasons: water conservation, fertilizer management efficiency, and freeze protection. Research has shown that when microirrigation systems are properly managed, water savings can amount to as much as 80% compared with subirrigation and 50% compared with overhead sprinkler irrigation. Research has also shown the important advantage of microsprinklers for freeze protection of citrus. This 4-page fact sheet discusses fertilizer solubility and some common fertigation materials. It also offers a fertigation summary. Written by Mongi Zekri, Arnold Schumann, Tripti Vashisth, Davie Kadyampakeni, Kelly Morgan, Brian Boman, and Tom Obreza, and published by the UF Horticultural Sciences Department, September 2017.

1993 ◽  
Vol 118 (5) ◽  
pp. 575-579 ◽  
Author(s):  
George J. Hochmuth ◽  
Salvadore J. Locascio ◽  
Stephen R. Kostewicz ◽  
Frank G. Martin

Three irrigation treatments (none, drip, and sprinkler) and eight rowcover treatments were evaluated for their capacity to provide freeze protection for strawberries (Fragaria ×ananassa Duch.) in a split-plot factorial field experiment. The period under study included 20 freeze events, two events with minima of -9.5C and -10.0C. With no freeze protection, up to 93% of the flowers were damaged by freezes. Among sprinkler-irrigated plants, an average of only 10% flowers were damaged due to the freezes. Heavy-weight rowcovers (polyethylene blanket and polypropylene, 30 and 50 g·m-2, respectively) protected strawberry flowers as well as sprinkler irrigation to -4.4C. Early yield (December-January) from unprotected plants was negligible. Early yields from plants protected with a 3.2-mm polyethylene blanket or a 50 g·m-2 polypropylene cover were equal to yields obtained with sprinkler-protected plants. Combinations of sprinkler and certain rowcover treatments provided for better fruit production than either treatment alone. Drip irrigation alone provided no protection from freezes. All strawberry plants recovered from freeze damage and total-season yields were similar with all irrigation methods and rowcovers.


EDIS ◽  
2020 ◽  
Author(s):  
Arnold W. Schumann ◽  
Ariel Singerman ◽  
Alan L. Wright ◽  
Rhuanito S. Ferrarezi

2020 ◽  
Vol 9 (4) ◽  
pp. e04942784
Author(s):  
Andrea Aline Mombach ◽  
Carla Grasiele Zanin Hegel ◽  
Rogério Luis Cansian ◽  
Sônia Beatris Balvedi Zakrzevski

The perception of a basic education of the importance of agroecological agricultural systems for human and environmental health is fundamental for changes in consumption habits, the conservation of local biodiversity and long-term social transformation. We analyzed, by utilizing a questionnaire consisting of open and closed questions, the perceptions about agroecological and conventional agricultural production systems in 360 final students of basic education residing in nine Functional Planning Regions of southern Brazil. We used classification categories for answers within thematic axes, expressed in percentages and analyzed by means of Chi-square and Kruskal-Wallis tests. In general, students recognize agroecological systems as healthier for their families and for soil and water conservation, largely because they do not use agrochemicals. However, they demonstrated difficulties when arguing their importance for the conservation of biodiversity, ecosystems and for ensuring the food security of populations. Television was the main source of information related to agroecology, mainly for students residing in rural areas, thus pointing out shortcomings in basic education regarding the approach of the theme in schools. Our results show the need to build a complex network of knowledge and discussions on agroecological agricultural systems in basic education, involving changes in student perceptions, behaviors and sustainable choices.


2013 ◽  
Vol 36 (5) ◽  
pp. 762-771 ◽  
Author(s):  
Christian Turra ◽  
Elisabete A. De Nadai Fernandes ◽  
Márcio Arruda Bacchi ◽  
Gabriel Adrián Sarriés ◽  
Fernando Barbosa Júnior ◽  
...  

EDIS ◽  
2021 ◽  
Author(s):  
Tripti Vashisth ◽  
Arnold W. Schumann ◽  
Ariel Singerman ◽  
Alan L. Wright ◽  
Rhuanito S. Ferrarezi ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 257 ◽  
Author(s):  
Husrev Mennan ◽  
Khawar Jabran ◽  
Bernard H. Zandstra ◽  
Firat Pala

Vegetables are a substantial part of our lives and possess great commercial and nutritional value. Weeds not only decrease vegetable yield but also reduce their quality. Non-chemical weed control is important both for the organic production of vegetables and achieving ecologically sustainable weed management. Estimates have shown that the yield of vegetables may be decreased by 45%–95% in the case of weed–vegetable competition. Non-chemical weed control in vegetables is desired for several reasons. For example, there are greater chances of contamination of vegetables by herbicide residue compared to cereals or pulse crops. Non-chemical weed control in vegetables is also needed due to environmental pollution, the evolution of herbicide resistance in weeds and a strong desire for organic vegetable cultivation. Although there are several ways to control weeds without the use of herbicides, cover crops are an attractive choice because these have a number of additional benefits (such as soil and water conservation) along with the provision of satisfactory and sustainable weed control. Several cover crops are available that may provide excellent weed control in vegetable production systems. Cover crops such as rye, vetch, or Brassicaceae plants can suppress weeds in rotations, including vegetables crops such as tomato, cabbage, or pumpkin. Growers should also consider the negative effects of using cover crops for weed control, such as the negative allelopathic effects of some cover crop residues on the main vegetable crop.


2002 ◽  
pp. 611-617 ◽  
Author(s):  
M. El-Otmani ◽  
A. Ait-Oubahou ◽  
F. Zahra ◽  
C.J. Lovatt

2010 ◽  
Vol 37 (2) ◽  
pp. 100-105 ◽  
Author(s):  
M. C. Lamb ◽  
R. B. Sorensen ◽  
R. C. Nuti ◽  
D. L. Rowland ◽  
W. H. Faircloth ◽  
...  

Abstract Peanut quality parameters were analyzed across four irrigation levels during the 2002 through 2007 crop years. The peanut quality parameters consisted of total sound mature kernels and sound splits (farmer stock grade), shelling outturn by commercial edible size, accept and reject kernels by commercial edible size, seed germination, and aflatoxin. The four irrigation levels consisted of a full level (100%), two reduced levels (66% and 33%), and a non-irrigated control. The research was conducted at the USDA/ARS National Peanut Research Laboratory's Multi-crop Irrigation Research Farm in Shellman, Georgia. By year, significant differences in the irrigation treatments depended upon precipitation distribution for the specific quality parameters. For the average over the six years in the study, farmer stock grade was not significantly different in the 100, 66, and 33% treatments while all were significantly higher than the non-irrigated control. Total shelling outturn and total edible outturn were higher in the 100 and 66% compared to the 33% and non-irrigated treatments. Total reject outturn and total oil stock were not significantly different in the 100, 66, and 33% treatments, while all were significantly lower than the non-irrigated control. Percent seed germination did not differ across treatments. Aflatoxin in total reject outturn and total oil stock was significantly higher for the non-irrigated treatment compared to the irrigated treatments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Siva K. Chamarthi ◽  
Avjinder S. Kaler ◽  
Hussein Abdel-Haleem ◽  
Felix B. Fritschi ◽  
Jason D. Gillman ◽  
...  

Drought causes significant soybean [Glycine max (L.) Merr.] yield losses each year in rain-fed production systems of many regions. Genetic improvement of soybean for drought tolerance is a cost-effective approach to stabilize yield under rain-fed management. The objectives of this study were to confirm previously reported soybean loci and to identify novel loci associated with canopy wilting (CW) using a panel of 200 diverse maturity group (MG) IV accessions. These 200 accessions along with six checks were planted at six site-years using an augmented incomplete block design with three replications under irrigated and rain-fed treatments. Association mapping, using 34,680 single nucleotide polymorphisms (SNPs), identified 188 significant SNPs associated with CW that likely tagged 152 loci. This includes 87 SNPs coincident with previous studies that likely tagged 68 loci and 101 novel SNPs that likely tagged 84 loci. We also determined the ability of genomic estimated breeding values (GEBVs) from previous research studies to predict CW in different genotypes and environments. A positive relationship (P ≤ 0.05;0.37 ≤ r ≤ 0.5) was found between observed CW and GEBVs. In the vicinity of 188 significant SNPs, 183 candidate genes were identified for both coincident SNPs and novel SNPs. Among these 183 candidate genes, 57 SNPs were present within genes coding for proteins with biological functions involved in plant stress responses. These genes may be directly or indirectly associated with transpiration or water conservation. The confirmed genomic regions may be an important resource for pyramiding favorable alleles and, as candidates for genomic selection, enhancing soybean drought tolerance.


Sign in / Sign up

Export Citation Format

Share Document