scholarly journals Reducing Fumigant Application Rates and Soil Emissions with Plastic Mulch Technology

EDIS ◽  
2013 ◽  
Vol 2013 (3) ◽  
Author(s):  
Joseph W. Noling

With the new fumigant regulations and rising cost of crop production, including fumigants, it would be desirable to reduce the standard use rate of soil fumigants. The use of higher-barrier, gas-impermeable mulches may make it possible to reduce fumigant application rates by helping to contain the fumigant longer within the soil and reduce overall emissions into the atmosphere. The results of field studies show that fumigant application rates can be reduced by 20 to as much as 40% through the use of virtually impermeable or the more gas-tight TIF mulch films at the time of application. This 5-page fact sheet was written by J. W. Noling and published by the UF Department of Entomology and Nematology, March 2013. http://edis.ifas.ufl.edu/in403

2021 ◽  
pp. 1-12
Author(s):  
Marife B. Anunciado ◽  
Larry C. Wadsworth ◽  
Shuresh Ghimire ◽  
Carol Miles ◽  
Jenny C. Moore ◽  
...  

Plastic mulch films contribute to improved crop yield and quality for vegetable and small fruit cropping systems. Although the single-season agronomic performance of conventional polyethylene mulches and soil-biodegradable mulches (BDMs) are similar, over time BDMs can begin to break down during storage and subsequently not provide season-long soil coverage. In this study, the changes in physicochemical properties of BDMs were investigated over 3 years of indoor storage (2015–18) under ideal environmental conditions in two laboratories. Mulches evaluated were black, 20–40 µm thick, suitable for annual vegetable production, and included three BDMs: two polybutylene adipate terephthalate (PBAT)-enriched mulches that are commercially available in North America, an experimental polylactic acid (PLA) and polyhydroxyalkanote-based film, and a conventional polyethylene mulch as a control. Tensile properties, specifically peak load and elongation at maximum tensile stress, decreased during storage, particularly for the PBAT-based BDMs, indicating a loss of strength. During year 3 of storage, the tensile properties declined extensively, suggesting embrittlement. The average molecular weight of PLA and PBAT slightly increased during year 1, perhaps due to release of monomers or oligomers, and then decreased extensively during years 2 and 3 due to hydrolysis of ester bonds (confirmed by Fourier transform infrared spectroscopic analysis). The structural integrity of BDMs was assessed during years 2 and 3 of the study (2017–18) in field trials at the locations where they were stored, Knoxville, TN, and Mount Vernon, WA, for vegetable production. The degradation of the BDMs during the cropping season was higher in 2018 compared with 2017, suggesting that degradation of mechanical and chemical properties while in storage may have contributed to rapid degradation of mulches in the field. In summary, BDMs undergo degradation even under ideal storage conditions and may perform best if deployed within 2 years of their receipt date. The farmer should verify that proper storage conditions have been used before receipt and that manufacturing date precedes the receipt date by no more than 6 months.


2019 ◽  
Author(s):  
Sreejata Bandopadhyay ◽  
Henry Y. Sintim ◽  
Jennifer M. DeBruyn

AbstractPolyethylene (PE) plastic mulch films are used globally in crop production but incur considerable disposal and environmental pollution issues. Biodegradable plastic mulch films (BDMs), an alternative to PE-based films, are designed to be tilled into the soil where they are expected to be mineralized to carbon dioxide, water and microbial biomass. However inadequate research regarding the impacts of repeated incorporation of BDMs on soil microbial communities has partly contributed to limited adoption of BDMs. In this study, we evaluated the effects of BDM incorporation on soil microbial community structure and function over two years in two geographical locations: Knoxville, TN, and in Mount Vernon, WA. Treatments included four plastic BDMs, a completely biodegradable cellulose mulch, a non-biodegradable PE mulch and a no mulch plot. Bacterial community structure determined using 16S rRNA amplicon sequencing revealed significant differences by location and season. Differences in bacterial communities by mulch treatment were not significant for any season in either location, except for Fall 2015 in WA where differences were observed between BDMs and no-mulch plots. Extracellular enzyme rate assays were used to characterize communities functionally, revealing significant differences by location and sampling season in both TN and WA but minimal differences between BDMs and PE treatments. Limited effects of BDM incorporation on soil bacterial community structure and soil enzyme activities when compared to PE suggest that BDMs have comparable influences on soil microbial communities, and therefore could be considered an alternative to PE.ImportancePlastic film mulches increase crop yields and improve fruit quality. Most plastic mulches are made of polyethylene (PE), which is poorly degradable, resulting in undesirable end-of-life outcomes. Biodegradable mulches (BDMs) may be a sustainable alternative to PE. BDMs are made of polymers which can be degraded by soil microbial enzymes, and are meant to be tilled into soil after use. However, uncertainty about impacts of tilled-in BDMs on soil health has restricted adoption of BDMs. Our previous research showed BDMs did not have a major effect on a wide range of soil quality indicators (Sintim et al. 2019); here we focus on soil microbial communities, showing that BDMs do not have detectable effects on soil microbial communities and their functions, at least over the short term. This informs growers and regulators about use of BDMs in crop production, paving a way for an agricultural practice that reduces environmental plastic pollution.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9015 ◽  
Author(s):  
Sreejata Bandopadhyay ◽  
Henry Y. Sintim ◽  
Jennifer M. DeBruyn

Plastic mulch films are used globally in crop production but incur considerable disposal and environmental pollution issues. Biodegradable plastic mulch films (BDMs), an alternative to polyethylene (PE)-based films, are designed to be tilled into the soil where they are expected to be mineralized to carbon dioxide, water and microbial biomass. However, insufficient research regarding the impacts of repeated soil incorporation of BDMs on soil microbial communities has partly contributed to limited adoption of BDMs. In this study, we evaluated the effects of BDM incorporation on soil microbial community structure and function over two years in two geographical locations: Knoxville, TN, and in Mount Vernon, WA, USA. Treatments included four plastic BDMs (three commercially available and one experimental film), a biodegradable cellulose paper mulch, a non-biodegradable PE mulch and a no mulch plot. Bacterial community structure determined using 16S rRNA gene amplicon sequencing revealed significant differences by location and season. Differences in bacterial communities by mulch treatment were not significant for any season in either location, except for Fall 2015 in WA where differences were observed between BDMs and no-mulch plots. Extracellular enzyme assays were used to characterize communities functionally, revealing significant differences by location and sampling season in both TN and WA but minimal differences between BDMs and PE treatments. Overall, BDMs had comparable influences on soil microbial communities to PE mulch films.


Author(s):  
Douglas G. Hayes ◽  
Marife B. Anunciado ◽  
Jennifer M. DeBruyn ◽  
Sreejata Bandopadhyay ◽  
Sean Schaeffer ◽  
...  

2020 ◽  
Author(s):  
Vilim Filipović ◽  
Lana Filipović ◽  
Yusong Wang ◽  
Michael V. Braunack ◽  
Raju Adhikari ◽  
...  

<p>Agricultural management techniques like plastic mulch films are widely used to enhance crop production by conserving soil water and increasing temperature with the ability to suppress weeds. However, the use of plastic represents large environmental concern since the recovery of plastics from soils and its persistence in the environment is causing global problems. The EU in leading in policy with ban on single use plastics and it is a matter of time when conventional plastic mulch films will be banned as well. To solve the problem, researchers have turned their attention to biodegradable products while lately sprayable biodegradable polymer membrane (SBPM) technology was introduced. Here, we present first results of glasshouse study and in-field experiments with SBPM technology in Australia where with the use of subsurface drip irrigation we could improve water use efficiency of crops with reducing evaporation. First results indicate that SBPM technology could limit soil evaporation, reduce irrigation needs and prevent weed emergence while at the same time providing environmentally sustainable agricultural practice through its biodegradability, nontoxicity and sprayability nature. This innovative technology shows large potential even at this early development stage with the need for further improvement of SBPM formulation, management and properties.</p>


The farming system in West Bengal is being shifted by integration between the set of cash crops and the main food harvest process. This change in diversified farming systems, where smallholders have a production base in rice can complement production; affect technical efficiency and farm performance. The goal of this study was to investigate the status of crop diversification on smallholders in West Bengal. First, crop diversification regions were developed in West Bengal based on the Herfindahl index, which were categorized into three regions. Three sample districts were studied separately at the block level, and 915 small farmers from 41 sample villages of 9 sample blocks were interviewed through a good structure questionnaire for field studies from the sample districts. West Bengal was gradually moving towards multiple crop production. Furthermore, increasing rice production reduced the marginal use of inputs for the production of other crops. Farming and other vital factors such as HYVs area to GCA, average holding size and per capita income in some districts of West Bengal can be identified as determinants of crop diversification.


2020 ◽  
Vol 5 (1) ◽  
pp. 317-324
Author(s):  
Kayla Snyder ◽  
Christopher Murray ◽  
Bryon Wolff

AbstractTo address agricultural needs of the future, a better understanding of plastic mulch film effects on soil temperature and moisture is required. The effects of different plant type and mulch combinations were studied over a 3.5-month period to better grasp the consequence of mulch on root zone temperature (RZT) and moisture. Measurements of (RZT) and soil moisture for tomato (Solanum lycopersicum), pepper (Capsicum annuum) and carrot (Daucus carota) grown using polyolefin mulch films (black and white-on-black) were conducted in Ontario using a plot without mulch as a control. Black mulch films used in combination with pepper and carrot plants caused similar RZTs relative to uncovered soil, but black mulch film in combination with tomato plants caused a reduction in RZT relative to soil without mulch that increased as plants grew and provided more shade. White-on-black mulch film used in combination with tomatoes, peppers or carrots led to a reduction in RZT relative to soil without mulch that became greater than the temperature of soil without mulch. This insulative capability was similarly observed for black mulch films used with tomato plants. Apart from white-on-black film used in combination with tomatoes, all mulch film and plant combinations demonstrated an ability to stabilize soil moisture relative to soil without mulch. RZT and soil moisture were generally stabilized with mulch film, but some differences were seen among different plant types.


1990 ◽  
Vol 4 (3) ◽  
pp. 631-634 ◽  
Author(s):  
R. E. Blackshaw

Field studies were conducted in 1987, 1988, and 1989 at Lethbridge, Alberta to determine suitable herbicides for the control of Russian thistle and kochia in field corn grown in a dryland cropping system. Soil-applied atrazine or cyanazine provided inconsistent control of these weeds under dryland conditions. Combining inter-row tillage or 2,4-D applied postemergence with soil-applied atrazine improved the consistency of weed control over years. Postemergence atrazine and dicamba plus 2,4-D controlled Russian thistle and kochia in all years. Corn yields reflected the level of weed control attained with each treatment. The suitability of the various treatments for weed control in corn grown under dryland crop production systems is discussed.


2013 ◽  
Vol 30 (2) ◽  
pp. 143-153 ◽  
Author(s):  
Jessica R. Goldberger ◽  
Robert Emmet Jones ◽  
Carol A. Miles ◽  
Russell W. Wallace ◽  
Debra A. Inglis

AbstractCommercial farmers have been using polyethylene plastic mulch since the 1950s. Despite the affordability and effectiveness of polyethylene mulch, the disposal process is financially and environmentally costly. Biodegradable plastic mulches, an ecologically sustainable alternative to polyethylene mulch films, were introduced in the 1980s. Biodegradable plastic mulches can be tilled into the soil or composted at the end of the season, reducing the labor and environmental costs associated with plastic removal and disposal. However, research results are mixed as to the effectiveness, degradability and ease-of-use of biodegradable plastic mulches. In 2008–2012, researchers, funded by a USDA Specialty Crop Research Initiative grant, conducted surveys and focus groups in three different agricultural regions of the USA to better understand the barriers and bridges to the adoption of biodegradable plastic mulches for specialty crop production systems. Data on the experiences and views of specialty crop growers, agricultural extension agents, agricultural input suppliers, mulch manufacturers and other stakeholders showed that the major adoption barriers were insufficient knowledge, high cost and unpredictable breakdown. The major bridges to adoption were reduced waste, environmental benefits and interest in further learning. These findings are discussed with reference to the classic innovation diffusion model, specifically work on the innovation–decision process and the attributes of innovations. The study results can be used to guide the activities of those involved in the design, development and promotion of biodegradable plastic mulches for US specialty crop production systems.


Author(s):  
M.B. O'Connor ◽  
A.H.C. Roberts ◽  
R.D. Longhurst ◽  
M.F. Hawke

Estimates of the wastes produced in the Bay of Plenty region indicate that 22 million m' (tonnes) is produced annually. The main contributors to waste production are the dairy industry (shed, factory),municipal sewage, pig, poultry, meatworks, kiwifruit, fishing and pulp and paper industries. In fertiliser terms these wastes are valued at $7.7 million. In addition the timber industry produces > 1 million tonnes of timber residues (sawdust, bark, woodchips) approximately 20% of which is currently dumped. Wastes, when recycled back on to the land, offer a potential source of nutrients to enhance pasture and crop production. In addition organic wastes provide a source of organic matter which may have beneficial effects on the physical properties of soils. Research results indicate that pumice soils are well suited to the application of wastes. Some general recommendations are given for the use of wastes in dairying, orcharding and cropping situations. Three factors are considered important for the successful utilisation of wastes (a) application rates need to be balanced to the nutrient needs of the soil-plant system (b) safeguards in the form of regular chemical monitoring of the effluent, soil, plant and animal need to be implemented, and(c) the economics of using the waste materials must be favourable to the farmer and orchardist. The principle of the producer of the waste paying for its safe disposal or utilisation needs to be adopted in New Zealand as it has in many overseas countries. Keywords nutrients, organic matter, waste recycling, pumice soils, fertiliser value


Sign in / Sign up

Export Citation Format

Share Document