Alkali Metal Exchanged Zeolite as Heterogeneous Catalyst for Biodiesel Production from Sunflower Oil and Waste Oil: Studies in a Batch/Continuous Slurry Reactor System

Author(s):  
M. E. Borges ◽  
A. Brito ◽  
A. Hernández ◽  
L. Díaz

Biodiesel as an alternative fuel has become more important in recent times due to the increasing awareness of fossil fuel resources and the environmental benefits. The main disadvantages are its cost and availability of fats and oils resources. By collecting used frying oils and converting them to biodiesel fuel, the cost of biodiesel is significantly lowered and the negative impact of disposing used oil to environment reduced.The aim of this study was to analyse the performance of several alkali metal exchanged zeolites as heterogeneous catalysts for biodiesel production from sunflower oil and waste oil. Several catalysts studied showed a high activity for transesterification reaction with batch or continuous flow reactor operation conditions performed: temperature (100- 155°C), methanol/oil molar ratio (12:1- 72:1 mol/mol) and catalyst concentration (3-6 wt %). Results indicated that biodiesel production using waste oil as feedstock has good potential because it is an inexpensive and available feedstock.

2014 ◽  
Vol 17 (2) ◽  
pp. 102-108
Author(s):  
Phuoc Van Nguyen ◽  
Chhoun Vi Thun ◽  
Quan Thanh Pham

Different technologies are currently available for biodiesel production from various kinds of lipid containing feedstock. Among them, the alkaline-catalyzed methods are the most widely studied. However, here are several disadvantages related to biodiesel production using alkaline catalysts such as generation of wastewater, catalyst deactivation, difficulty in the separation of biodiesel from catalyst and glycerin, etc. To limit the problems mentioned above, in this study, biodiesel is produced by a non-catalytic using C2H5OH. The effect of experimental variables (the molar ratio ethanol/oil of 41.18:1 – 46.82:1, reaction times of 50 - 90 minutes and reaction temperatures of 2750C - 2950C) on the yield of biodiesel was studied. The 96% yield of Cambodia biodiesel of reaction between C2H5OH and Jatropha Oil at 46:1 at temperature 2900C at 60 minutes no using catalysts. Obtained biodiesel fuel was up to the International Standard ASTM D6751 for biodiesel fuel blend stock (B100).


2019 ◽  
Vol 73 (6) ◽  
pp. 351-362 ◽  
Author(s):  
Dusica Djokic-Stojanovic ◽  
Zoran Todorovic ◽  
Dragan Troter ◽  
Olivera Stamenkovic ◽  
Ljiljana Veselinovic ◽  
...  

Triethanolamine was applied as an efficient ?green? cosolvent for biodiesel production by CaO-catalyzed ethanolysis of sunflower oil. The reaction was conducted in a batch stirred reactor and optimized with respect to the reaction temperature (61.6-78.4?C), the ethanol-to-oil molar ratio (7:1-17:1) and the cosolvent loading (3-36 % of the oil weight) by using a rotatable central composite design (RCCD) combined with the response surface methodology (RSM). The optimal reaction conditions were found to be: the ethanol-to-oil molar ratio of 9:1, the reaction temperature of 75?C and the cosolvent loading of 30 % to oil weight, which resulted in the predicted and actual fatty acid ethyl ester (FAEE) contents of 98.8 % and 97.9?1.3 %, respectively, achieved within only 20 min of the reaction. Also, high FAEE contents were obtained with expired sunflower oil, hempseed oil and waste lard. X-ray diffraction analysis (XRD) was used to understand the changes in the CaO phase. The CaO catalyst can be used without any treatment in two consecutive cycles. Due to the calcium leaching into the product, an additional purification stage must be included in the overall process.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Egle Sendzikiene ◽  
Violeta Makareviciene

Abstract The ever-increasing environmental pollution from greenhouse gases motivates the search for methods to reduce it. One such method is the use of biodiesel fuels in the transport sector. Conventional biodiesel production generates up to 10% of a by-product, raw glycerol, whose amount continues to increase as biodiesel production volumes expand, but its demand remains limited. Recently, options have been analysed to replace the triglyceride transesterification process generally used in biodiesel production with an interesterification process that does not generate raw glycerol, instead yielding triacylglycerol that can be directly used as fuel for diesel engines by mixing with fatty acid esters. Additionally, triacylglycerol improves the low-temperature properties of fuel. The present article discusses triglyceride interesterification processes using various carboxylate esters of low molecular weight. Information is provided on raw materials that can be subjected to interesterification for biodiesel synthesis. The possible applications of chemical and enzymatic catalysis for triglyceride interesterification are discussed, and the influence of the catalyst amount, molar ratio of reactants, temperature and process duration on the effectiveness of interesterification is examined. The conditions and effectiveness of noncatalytic interesterification are also discussed in the article. Qualitative indicators of the products obtained and their conformity to the requirements of the European standard for biodiesel fuel are discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. F. Elkady ◽  
Ahmed Zaatout ◽  
Ola Balbaa

The production of biodiesel from waste vegetable oils through its pretreatment followed by transesterification process in presence of methanol was investigated using a KM micromixer reactor. The parameters affecting biodiesel production process such as alcohol to oil molar ratio, catalyst concentration, the presence of tetrahydrofuran (THF) as a cosolvent, and the volumetric flow rates of inlet fluids were optimized. The properties of the produced biodiesel were compared with its parent waste oil through different characterization techniques. The presence of methyl ester groups at the produced biodiesel was confirmed using both the gas chromatography-mass spectrometry (GC-MS) and the infrared spectroscopy (FT-IR). Moreover, the thermal analysis of the produced biodiesel and the comparable waste oil indicated that the product after the transesterification process began to vaporize at 120°C which makes it lighter than its parent oil which started to vaporize at around 300°C. The maximum biodiesel production yield of 97% was recorded using 12 : 1 methanol to oil molar ratio in presence of both 1% NaOH and THF/methanol volume ratio 0.3 at 60 mL/h flow rate.


2020 ◽  
Vol 21 (1) ◽  
pp. 88
Author(s):  
Alwi Gery Agustan Siregar ◽  
Renita Manurung ◽  
Taslim Taslim

In this study, silica derived from corncobs impregnated with sodium hydroxide to obtain sodium silicate was calcined, prepared, and employed as a solid base catalyst for the conversion of oils to biodiesel. The catalyst was characterized by X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope Energy Dispersive X-Ray Spectroscopy (SEM-EDS), and Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. Gas Chromatography-Mass Spectrometry (GC-MS) was used to characterize the biodiesel products. The optimum catalyst conditions were calcination temperature of 400 °C for 2 h, catalyst loading of 2%, and methanol: oil molar ratio of 12:1 at 60 °C for 60 min, that resulted in a yield of 79.49%. The final product conforms to the selected biodiesel fuel properties of European standard (EN14214) specifications. Calcined corncob-derived sodium silicate showed high potential for use as a low-cost, high-performance, simple-to-prepare solid catalyst for biodiesel synthesis.


2021 ◽  
Vol 11 (3) ◽  
pp. 1-18
Author(s):  
Dr. Ban A. Al-Tabbakh ◽  
Sattar J. Hussein ◽  
Zena A. Hadi

Biodiesel was produced using oleic acid esterification and transesterification of the sunflower oil methods. Many different factors affecting production procedures were studied such as reaction temperature, the molar ratio of ethanol to oil, reaction time and concentration of HY catalyst. Different techniques such as TGA, FTIR and Mass spectroscopy were used to syntheses biodiesel. Results showed that 78% of oleic acid maximum conversion was obtained at a temperature of 70oC with molar ratio 12:1 ethanol: oil with 5 wt.% catalysts at 90 min reaction time, while for sunflower oil conversion of 98% at 200oC with 5 weight ratio of ethanol: oil at a time of 3 h was successfully obtained.


2020 ◽  
Vol 20 (1) ◽  
pp. 67
Author(s):  
Hary Sulistyo ◽  
Edwin Nur Huda ◽  
Tri Sarifah Utami ◽  
Wahyudi Budi Sediawan ◽  
Suprihastuti Sri Rahayu ◽  
...  

Glycerol, as a by-product of biodiesel production, has recently increased due to the rapid growth of the biodiesel industry. Glycerol utilization is needed to increase the added value of glycerol. Glycerol can be converted to solketal, which can be used as a green fuel additive to enhance an octane or cetane number. Conversion of glycerol to solketal was conducted via acetalization reaction with acetone using amberlyst-15 as the catalyst. The objective of present study was to investigate the effect of some operation conditions on glycerol conversion. Furthermore, it also aimed to develop a kinetic model of solketal synthesis with amberlyst-15 resins. The experiment was conducted in a batch reactor, equipped with cooling water, thermometer, stirrer, and a water bath. The variables that have been investigated in the present work were reaction temperature, reactants molar ratio, catalyst loading, and stirrer speed for 3 hours of reaction time. Temperatures, reactants molar ratio, and stirrer speed appeared to have a significant impact on glycerol conversion, where the higher values led to higher conversion. On the other hand, in the presence of catalyst, the increase of catalyst loading has a less significant impact on glycerol conversion. The results showed that the highest glycerol conversion was 68.75%, which was obtained at 333 K, the reactant’s molar ratio was  4, the amount of catalyst was 1 wt%, and stirrer speed of 500 rpm. Based on the pseudo-homogeneous kinetic model, the resulting kinetic model suitable for this glycerol capitalization. The value of parameters k and Ea were 1.6135 108 min-1 and 62.226 kJ mol-1,respectively. The simulation model generally fits the experimental data reasonably well in the temperature range of 313-333 K.


2013 ◽  
Vol 291-294 ◽  
pp. 284-289
Author(s):  
Xue Lin Zhang ◽  
Jun Jun Li ◽  
Xiang Hua Tang ◽  
Zhen Rong Xie ◽  
Zun Xi Huang

This study employed statistically based on experimental designs to optimize transesterification conditions for biodiesel production from waste oil via lipase-catalyzed in homoeothermy. Optimization of different reaction parameters were done by using response surface methodology. Results indicated optimum conditions including: alcohol to oil molar ratio 3:1, lipase concentration 58.38 U each gram of oil, water and n-hexane content were 24.59% and 13.28% respectively, reaction temperature at 20 °C , and reaction time for 24 h. Under these optimal conditions, 98.24% yield of biodiesel was obtained. This study will probably contribute to the development of continuous enzymatic processes, and maybe a suitable method for industrial production of biodiesel.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mostafa Feyzi ◽  
Leila Norouzi ◽  
Hamid Reza Rafiee

The kinetic of the transesterification reaction over theCsXH3−XPW12O40/Fe-SiO2catalyst prepared using sol-gel and impregnation procedures was investigated in different operational conditions. Experimental conditions were varied as follows: reaction temperature 323–333 K, methanol/oil molar ratio = 12/1, and the reaction time 0–240 min. The H3PW12O40heteropolyacid has recently attracted significant attention due to its potential for application in the production of biodiesel, in either homogeneous or heterogeneous catalytic conditions. Although fatty acids esterification reaction has been known for some time, data is still scarce regarding kinetic and thermodynamic parameters, especially when catalyzed by nonconventional compounds such as H3PW12O40. Herein, a kinetic study utilizing Gc-Mas in situ allows for evaluating the effects of operation conditions on reaction rate and determining the activation energy along with thermodynamic constants includingΔG,ΔS, andΔH. It indicated that theCsXH3−XPW12O40/Fe-SiO2magnetic nanocatalyst can be easily recycled with a little loss by magnetic field and can maintain higher catalytic activity and higher recovery even after being used 5 times. Characterization of catalyst was carried out by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), N2adsorption-desorption measurements methods, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC).


Sign in / Sign up

Export Citation Format

Share Document