scholarly journals Fabrication of Ceramic Alumina Tube by Extrusion Method

2019 ◽  
Vol 28 (1) ◽  
pp. 64
Author(s):  
Suzanne Agustin ◽  
Kristanto Wahyudi ◽  
Rizky Berliana Wijayanti ◽  
Maulid Purnawan
2021 ◽  
pp. 2008326
Author(s):  
Peng Guo ◽  
Sara Busatto ◽  
Jing Huang ◽  
Golnaz Morad ◽  
Marsha A. Moses

2020 ◽  
Vol 4 (1) ◽  
pp. 46-63
Author(s):  
Hanan ElNaghy ◽  
Leo Dorst

AbstractWhen fitting archaeological artifacts, one would like to have a representation that simplifies fragments while preserving their complementarity. In this paper, we propose to employ the scale-spaces of mathematical morphology to hierarchically simplify potentially fitting fracture surfaces. We study the masking effect when morphological operations are applied to selected subsets of objects. Since fitting locally depends on the complementarity of fractures only, we introduce ‘Boundary Morphology’ on surfaces rather than volumes. Moreover, demonstrating the Lipschitz nature of the terracotta fractures informs our novel extrusion method to compute both closing and opening operations simultaneously. We also show that in this proposed representation the effects of abrasion and uncertainty are naturally bounded, justifying the morphological approach. This work is an extension of our contribution earlier published in the proceedings of ISMM2019 [10].


1996 ◽  
Vol 27 (3) ◽  
pp. 259-265 ◽  
Author(s):  
G.H. Brusewitz ◽  
H. Yu
Keyword(s):  

2008 ◽  
Vol 17 (4) ◽  
pp. 321-326 ◽  
Author(s):  
E. Navaei Alvar ◽  
M. Reza Golmohammadi ◽  
M. Rezaei ◽  
H. Navaei Alvar ◽  
A. Mardanloo ◽  
...  

2014 ◽  
Vol 59 (1) ◽  
pp. 121-126
Author(s):  
M. Zygmunt-Kiper ◽  
L. Blaz ◽  
M. Sugamata

Abstract Mechanical alloying of high-purity aluminum and 10 wt.% NiO powders combined with powder vacuum compression and following hot extrusion method was used to produce an Al-NiO composite. Mechanical properties of as-extruded materials as well as the samples annealed at 823 K /6 h, were tested by compression at 293 K - 770 K. High mechanical properties of the material were attributed to the highly refined structure of the samples. It was found that the structure morphology was practically not changed during hot-compression tests. Therefore, the effect of deformation temperature on the hardness of as-deformed samples was very limited. The annealing of samples at 823 K/6 h induced a chemical reaction between NiO-particles and surrounding aluminum matrix. As a result, the development of very fine aluminum oxide and Al3Ni grains was observed.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 236
Author(s):  
Wanyu Liu ◽  
Yue Li ◽  
Shunmin Yi ◽  
Limin Wang ◽  
Haigang Wang ◽  
...  

To expand the use of wood plastic composites in the structural and engineering constructions applications, continuous aramid fiber (CAF) with nondestructive modification was incorporated as reinforcement material into wood-flour and high-density-polyethylene composites (WPC) by extrusion method with a special die. CAF was treated with dopamine (DPA), vinyl triethoxysilane (VTES), and DPA/VTES, respectively. The effects of these modifications on compatibility between CAF and WPCs and the properties of the resulting composites were explored. The results showed that compared with the original CAF, the adhesion strength of DPA and VTES combined modified CAF and WPCs increased by 143%. Meanwhile, compared with pure WPCs, CAF after modification increased the tensile strength, tensile modulus, and impact strength of the resulting composites by 198, 92, and 283%, respectively.


Author(s):  
N.N. Zagirov ◽  
Yu.N. Loginov ◽  
E.V. Ivanov ◽  
V.G. Kuz’min

The problem of chip processing of aluminum alloy containing scandium is considered. The difficulty of remelting due to easy oxidation of the alloy components is noted. It is proposed to dispose of the shavings without transferring the metal to liquid state. The aim of the work is to construct technological scheme for the processing of waste chips of the Al—Mg—Sc alloy formed as result of machining cast billets by cutting. Results of experiments including cold briquetting, hot extrusion and drawing are presented. The mechanical properties of the product obtained according to several variants of the technological scheme are measured. The possibility of continuous drawing of semi-finished product is shown. The conclusion is made about the possibility of using the scheme in the production process.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Djaenudin ◽  
Endang Saepudin ◽  
Muhamad Nasir

 Chitosan-coated L. casei containing alginate capsules (shortened as L. casei capsules) were prepared by extruding L. casei containing alginate solution at different extrusion voltage and and flow rate followed by coating the wet capsules in chitosan solution. This study aimed to determine the effect of extrusion voltage and sodium alginate liquid flow rate on the viability of L. casei bacteria in the encapsulation process. The encapsulation process in this study was carried out by the extrusion method using sodium alginate of 1% (w/v) and chitosan of 0.2% (w/v). The resulted beads were immersed in a simulated gastric fluid (SGF) (NaCl 0.2%; HCl 0.5 M with a pH of 1.5) for 1, 60, and 120 min at 37 °C. The number of L. casei cells before encapsulation was 12.3 log CFU. After encapsulation, the maximum viability of L. Casei obtained by voltage variations of 0 kV and flow rate 5 mL/min were 12.26 log CFU.  After testing the beads in SGF for 1 min, the results obtained indicate that viability of L.casei in the sodium alginate - chitosan beads with an extrusion voltage of 0 kV and 5 mL/min was 11.8 log CFU/g. The result indicated that encapsulated L. casei in the sodium alginate - chitosan beads with a voltage of 0 kV and 5 mL/min was the highest survivability level of 97.38 %. The conclusions of the study were The higher extrusion voltage can kill more L. casei while the higher extrusion flow rate can protect more L. casei.


Sign in / Sign up

Export Citation Format

Share Document